摘要:
In general, in one aspect, the invention features assemblies that include a first polarizing beam splitter positioned in the paths of a pair of initial beams, the polarizing beam splitter being configured to combine the pair of initial beams to form an input beam. The assemblies further include an interferometer positioned to receive the input beam and configured to produce an output beam that includes information about an optical path difference between the paths of two component beams derived from the input beam. A second polarizing beam splitter is positioned in the path of the output beam and configured to split the output beam into a pair of secondary output beams that each include information about the optical path difference between the component beam paths.
摘要:
A signal conditioner to measure the length of an interferometric gap in a Fabry-Perot sensor (interferometer). The invention includes a light source, a Fabry-Perot interferometer capable of spanning a range of gaps in response to physical changes in the environment, a second interferometer that is placed in series with the Fabry-Perot interferometer which does not filter any particular wavelengths of light but acts as an optical cross-correlator, a detector for converting the correlated light signal into electronic signals, and an electronic processor which controls system elements and generates a signal indicative of the length of the gap spanned by the Fabry-Perot sensor.
摘要:
Scanning interferometry methods and related systems are described in which scanning interferometry data for a test object is provided. The data typically include intensity values for each of multiple scan positions for each of different spatial locations of the test object. The intensity values for each spatial location typically define an interference signal for the spatial location. The intensity values for a common scan position typically define a data set for that scan position. Scan values are provided for each scan position. In general, scan value increments between various scan values are non-uniform (e.g., different). Information is determined about the test object based on the scanning interferometry data and scan values. Typically, the determination includes transforming at least some of the interference signals into a frequency domain with respect to the scan values.
摘要:
The invention features a method for determining non-linear cyclic errors in a metrology system that positions a measurement object under servo-control based on an interferometrically derived position signal. The method includes: translating the measurement object under servo-control at a fixed speed; identifying frequencies of any oscillations in the position of measurement object as it is translated at the fixed speed; and determining amplitude and phase coefficients for sinusoidal components at the identified frequencies which when combined with the position signal suppress the oscillations. The invention also features a method for positioning a measurement object under servo-control based on an interferometrically derived position signal indicative of a position for the measurement object. This method includes: generating a compensated position signal based on the interferometrically derived position signal and at least one correction term that has a sinusoidal dependence on the position of the measurement object; and repositioning the measurement object based on the compensated position signal and a desired position for the measurement object.
摘要:
Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
摘要:
An interferometry system includes: i) a first polarizing beam splitter which during operation separates an input beam into a measurement beam and a reference beam; ii) a beam steering element positioned to direct the measurement beam, and not the reference beam, the measurement beam contacting the beam steering element; iii) an interferometer positioned to receive at least a portion of the measurement beam and direct it to a measurement object, which reflects it to define a return measurement beam, and wherein the interferometer is further positioned to receive at least a portion of the reference beam and direct it to a reference object, which reflects it to define a return reference beam; and (iv) an electronic control circuit coupled to the beam steering element. During operation the control circuit adjusts the orientation of the beam steering element in response to changes in the angular orientation of the measurement object. The beam steering element is further positioned to direct the return reference beam, and not the return measurement beam, the return reference beam contacting the beam steering element. The first polarizing beam splitter recombines the return reference beam and the return measurement beam to form an output beam.
摘要:
A manipulator for a fiber optic cable assembly (FOCA) provides microradian accuracy in control of the direction of a beam emanating from the FOCA. Such manipulators can control FOCAs to control the incidence angles of beams at a beam combiner in a beam-combining unit. Accordingly, fewer additional optical elements are required for control of input paths in the beam-combining unit. The manipulator and the beam-combining unit are accurate enough for use in an interferometer that combines beams with different frequencies and polarizations. One such interferometer includes a Zeeman split laser providing a heterodyne beam. A beam splitter separates frequency components of the beams, and AOMs increase the frequency separation between the separated beams. The separated beams can be sent via optical fibers to the beam-combining unit, which combines the beams for use in interferometer optics.
摘要:
An apparatus and a method of measuring an optical path difference in a sensing interferometer. Light from a source is directed in the sensing interferometer. The light reflected from the sensing interferometer is splitted into first and second beams respectively directed into two reference interferometers having optical path differences greater than the coherence length of the source and such that the optical signals are in quadrature. The intensities of the light transmitted by the reference interferometers and recombined light reflected from the reference interferometers are detected for measuring the optical path difference in the sensing interferometer. Additional light sources allow for correction of internal perturbations and absolute measurement of the optical path difference in the sensing interferometer.
摘要:
Optical coherence tomography (OCT) is an imaging method which can image with micrometer-scale resolution up to a few millimeters deep into, for example, living biological tissues and preserved tissue samples. An improved apparatus and image reconstruction algorithm for parallel Fourier Domain OCT which greatly eases requirements for interferometer stability and also allows for more efficient parallel image acquisition is provided. The apparatuses and algorithms reconstruct images from interfered, low-coherence, multiwave length signals having a null radian phase difference relative to one another. Other numbers of signals and other phase differences may be alternatively used, with some combinations resulting in higher resolution and image stability. The apparatus also eliminates a need for bulk optics to modulate a phase delay in a reference arm of the optical path. Images may be reconstructed using two spectrometers, where each is coupled to a detector array such as a photodiode array.
摘要:
Measurements of an interferometric measurement system are corrected for variations of atmospheric conditions such as pressure, temperature, and turbulence using measurements from a second harmonic interferometer (SHI). A ramp, representing the dependence of the SHI data on path length, is removed before utilizing the SHI data. The SHI may include a passive Q-switched laser as a light source and Brewster prisms in the receiver module. Optical fibers may be used to conduct light to the detectors. A mirror reflecting the measurement beams has a coating of a thickness selected to minimize the sensitivity of the SHI data to changes in coating thickness.