摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Disclosed herein are interferometric systems having reflective chambers and related methods. According to an aspect, an interferometric system may include a light source for generating an illumination beam that propagates towards a sample. A sample holder may hold the sample and include a partially reflective cover for allowing a first portion of the illumination beam to pass therethrough to interact with the sample to produce a sample beam that propagates substantially along an optical axis. The cover may be oriented at an angle for reflecting a second portion of the illumination beam to produce a reference beam that propagates at a predetermined angle with respect to the optical axis. An imaging module may redirect the reference beam towards the optical axis at a detection plane. A detector may intercept the sample and reference beams and may generate a holographic representation of the sample based on the beams.
摘要:
An apparatus and method for obtaining depth-resolved spectra for the purpose of determining the size of scatterers by measuring their elastic scattering properties. Depth resolution is achieved by using a white light source in a Michelson interferometer and dispersing a mixed signal and reference fields. The measured spectrum is Fourier transformed to obtain an axial spatial cross-correlation between the signal and reference fields with near 1 μm depth-resolution. The spectral dependence of scattering by the sample is determined by windowing the spectrum to measure the scattering amplitude as a function of wavenumber.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
摘要:
Radiation that propagates undeflected through a turbid medium, undergoes a small change in phase velocity due to its wave nature. This change can be measured using a differential phase optical interferometer. Ballistic propagation can be classified into three regimes: For scatterers small compared to the wavelength, the turbid medium acts as a bulk medium; for large scatterers, phase velocity is independent of turbidity; and in the intermediate regime the phase velocity is strongly dependent on scatterer radius. In particular, for scatterers having intermediate size a phase velocity increase and negative dispersion is observed by adding positive dispersion scatterers of higher refractive index. These measurements are made using the phase difference between fundamental and harmonic light and can be used to provide diagnostic information and images of tissue or biological fluids.
摘要:
Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
摘要:
Optical fiber-based angle-resolved low coherence interferometric systems and methods are disclosed for imaging of scattering samples and measurement of optical and structural properties. A single-mode collection optical fiber can be employed and scanned to collect an angular scattering distribution of scattered light from the sample. Use of a single-mode collection optical fiber can reduce cost, increase signal accuracy, and provide compatibility with optical coherence tomography systems, as examples. In certain embodiments, collected angular scatterings of light from the sample are cross-correlated with a reference signal to provide an angular scattering distribution of scattering of light from the sample. The angular scattering distribution can be spectrally dispersed to yield an angle-resolved, spectrally-resolved cross-correlation profile having depth-resolved information about the sample at the scattering angles. The angle-resolved, spectrally-resolved cross-correlation profile can be analyzed to provide size and/or depth information about the sample. The systems and methods can also be employed in non-interferometric modes.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Disclosed herein are interferometric systems having reflective chambers and related methods. According to an aspect, an interferometric system may include a light source for generating an illumination beam that propagates towards a sample. A sample holder may hold the sample and include a partially reflective cover for allowing a first portion of the illumination beam to pass therethrough to interact with the sample to produce a sample beam that propagates substantially along an optical axis. The cover may be oriented at an angle for reflecting a second portion of the illumination beam to produce a reference beam that propagates at a predetermined angle with respect to the optical axis. An imaging module may redirect the reference beam towards the optical axis at a detection plane. A detector may intercept the sample and reference beams and may generate a holographic representation of the sample based on the beams.