Abstract:
A coupler/splitter including two neighboring coplanar waveguide portions extending in a same direction, the first portion having a constant cross-section, the second portion having a variable cross-section so that the effective index of the second waveguide portion varies, in the upstream-to-downstream direction, from a first lower value to a second value higher than the effective index of the first portion, in adiabatic coupling conditions.
Abstract:
An optical waveguide device having a Mach-Zehnder type waveguide formed on a substrate is provided in which a slope of two waveguides input to an optical coupler on an output side of the Mach-Zehnder type waveguide is 0 degrees, a waveguide of the optical coupler after being coupled by the optical coupler is a multi-mode waveguide, and the waveguide which is output from the optical coupler is a three-branched waveguide including an output main waveguide and two output sub waveguides interposing the output main waveguide therebetween.
Abstract:
A semiconductor optical waveguide device includes a substrate having a first area and a second area, and first, second, and semiconductor mesas on the substrate. The first semiconductor mesa includes a cladding layer and a first mesa portion on the second area, the first mesa portion including first and second portions. The second semiconductor mesa includes an intermediate layer, a first core layer, and first and second mesa portions on the first and second area, respectively. The third semiconductor mesa includes a second core layer, and first and second mesa portions having a greater width than that of the second semiconductor mesa. The first portion of the first semiconductor mesa has a substantially the same width as the second mesa portion of the second semiconductor mesa. The first core layer is optically coupled to the second core layer through the intermediate layer disposed between the first and second core layers.
Abstract:
A base device has a first waveguide positioned on a first base. The waveguide is at least partially defined by a ridge extending away from the first base. An auxiliary optical device has a second waveguide positioned on a second base. The second optical device is immobilized on the base device such that the second waveguide is between the first base of the first optical device and the second base of the auxiliary device. The first waveguide is optically aligned with the second waveguide such that the first waveguide and second waveguides can exchange optical signals.
Abstract:
An optical splitter/coupler has: a multimode waveguide having an electrooptic effect, and propagating light in a multimode; one incident waveguide propagating light in a single mode, and inputting the light to the multimode waveguide; one pair of emitting waveguides guiding-out, in a single mode, lights which have propagated-in through the multimode waveguide; at least one pair of individual electrodes provided so as to be positioned in vicinities of respective side edges on one surface of the multimode waveguide; and a ground electrode provided on another surface, wherein the multimode waveguide has a length such that 3(n+1) bright spots arise at a central portion and at both side edge portions due to incident light, the individual electrodes are provided at positions corresponding to an upstream-most one pair of the bright spots, and the emitting waveguides are connected to positions corresponding to a downstream-most one pair of the bright spots.
Abstract:
Methods of attenuating, delaying the phase, and otherwise controlling an optical signal propagating along a waveguide are provided. According to one method, a variable optical attenuator structure is provided comprising a waveguide core, a cladding, an electrooptic polymer, and a set of control electrodes. The core, the cladding, and the electrooptic polymer are configured such that an increase in the index of refraction of the polymer causes a substantial portion of an optical signal propagating along the waveguide core to couple into a relatively high index region of the electrooptic polymer above the waveguide core, so as to inhibit return of the coupled signal to the waveguide core. Another embodiment of the present invention introduces a phase delay in the coupled optical signal and permits return of the coupled signal to the waveguide core. An additional embodiment contemplates the use of a ridge waveguide structure to enable control of the optical signal. Additional embodiments are disclosed and claimed.
Abstract:
A controllable variable optical attenuator for attenuating an optical signal is described herein. The attenuator has an optical waveguide made from similar waveguide core and cladding materials and a coupling layer in close proximity to the waveguide which is configured to provide a difference between the refractive index of the coupling layer in proximity to the waveguide and the effective index of the waveguide. The index of the waveguide can be modified such that if the refractive index of the coupling layer is substantially lower than the effective index of the waveguide, minimal attenuation occurs to the light in the waveguide. Furthermore, if the refractive index of the coupling layer is substantially greater than the effective index of the waveguide, light is coupled into the coupling layer out of the waveguide to attenuate the optical signal. The amount of attenuation varies smoothly between these maximum and minimum values.
Abstract:
The wavelength tolerance of a frequency doubler is enhanced so as to perform stable operation. Further, with the use of this frequency doubler, a laser source can directly modulate a laser. A waveguide and a periodic domain inverted layer are formed on an LiTaO.sub.3 substrate of -C plate, and the waveguide is divided into a plurality of zones having different propagation constants. A fundamental wave inputted in the waveguide is converted into a harmonic wave in each of the zones, and is emitted as SHG light. Parts for modulating the phases of the harmonic waves produced in the respective zones are provided between the zones.
Abstract:
In an embodiment, an apparatus is disclosed that includes at least one processor configured to determine a target portion of an eye motion box and to identify a facet of a light-guide optical element that is configured to direct a light beam comprising at least a portion of an image field of view toward the target portion of the eye motion box. The at least one processor is configured to identify a display region of an image generator that is configured to inject the light beam into the light-guide optical element at an angle that, in conjunction with the identified facet, is configured to direct the light beam toward the target portion of the eye motion box. The at least one processor is configured to selectively activate the identified facet and the identified display region to direct the light beam toward the target portion of the eye motion box.
Abstract:
An optical phase shifter in which a phase shift amount is kept constant in a wide wavelength region is provided. One aspect is the optical phase shifter constituting of two waveguides of a basic width, and configured so that two lights propagating through each waveguide have a phase difference, including a different type waveguide arranged in at least one of the two waveguides and having a waveguide width different from the basic width, and a configuration of the different type waveguide and a parameter of the two waveguides and different type waveguide are optimized.