Abstract:
A solid state circuit breaker that may include a metal oxide varistor (MOV) that is connected in series to a thyristor, the MOV to clamp voltage of current flowing through the solid state circuit breaker; the thyristor including a gate to control flow of the current to the MOV along a first path to the MOV; a breakover diode to activate at a target voltage level to allow the current to flow to the MOV along a second path; and a Zener diode to close the gate and allow current to flow along the first path in response to the current on the second path.
Abstract:
The object of the invention is a multi-contact element for a varistor wherein the multi-contact element has a sandwich structure, wherein the sandwich structure has two or more contact elements in a lowermost layer, and wherein the sandwich structure has at least one common connection electrode in an uppermost layer, wherein a first intermediate layer made of an electrically insulating layer of material is provided at least in segments between the lowermost layer (US) and the uppermost layer, wherein fuses are located in the first intermediate layer that are configured such that they are capable of sustaining a specified surge current, the specified surge current per fuse being less than the specified surge current of the varistor, wherein the fuses are embodied as vias within the first intermediate layer, wherein the fuses in the first intermediate layer are in direct electrical contact with the common connection electrode, wherein each of the fuses is in direct or indirect electrical contact with a subset of the contact elements (KE1, KE2), wherein the fuses provide blow-out channels in the first intermediate layer so that in the event of a thermal overloading of a fuse of the first intermediate layer, the affected fuse can vaporize through the blow-out channel.
Abstract:
A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may consist of a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
Abstract:
A voltage nonlinear resistive element 20 of the present invention includes a voltage nonlinear resistive material 30 composed of a copper alloy which has a two-phase structure containing a Cu phase 31 and a Cu—Zr compound phase 32 not containing a eutectic phase, and electrodes 21 and 22. The voltage nonlinear resistive material 30 may have a mosaic-shaped structure in which the Cu phase 31 and the Cu—Zr compound phase 32 are dispersed as crystals with a size of 10 μm or less in a cross-sectional view. The Cu—Zr compound phase 32 may be at least one of Cu5Zr, Cu9Zr2, and Cu8Zr3. Also, the voltage nonlinear resistive material 30 may be formed by spark plasma sintering of a Cu—Zr binary alloy powder. The voltage nonlinear resistive material 30 may contain 0.2 at % or more and 18.0 at % or less of Zr.
Abstract:
To provide a resistance change device that can be protected from an excess current without enlarging a device size. A resistance change device 1 according to the present embodiment includes a lower electrode layer 3, an upper electrode layer 6, a first metal oxide layer 51, a second metal oxide layer 52, and a current limiting layer 4. The first metal oxide layer 51 is disposed between the lower electrode layer 3 and the upper electrode layer 6, and has a first resistivity. The second metal oxide layer 52 is disposed between the first metal oxide layer 51 and the upper electrode layer 6, and has a second resistivity higher than the first resistivity. The current limiting layer 4 is disposed between the lower electrode layer 3 and the first metal oxide layer 51, and has a third resistivity higher than the first resistivity and lower than the second resistivity.
Abstract:
A varistor, or voltage-limiting composition has a polymer matrix and a particulate filler containing a partially conductive material applied to an electrically non-conductive carrier material. The carrier material has a lower density than the partially conductive material, so that the settling rate of the filler in the polymer matrix is reduced. The voltage-limiting composition can therefore also be used as a lacquer or for prepreg materials. A body which acts as a varistor may be produced using a composition of this kind by a method that includes annealing. The varistor may be used for surge arresters, in particular in medium-voltage systems, low-voltage systems, cable connections and cable fasteners.
Abstract:
A stacked arrangement of metal oxide varistors includes a plurality of metal oxide varistors with each metal oxide varistor of the plurality of metal oxide varistors having a first lead on a first surface and a second lead on a second surface, the first surface and the second surface being opposite facing surfaces of each metal oxide varistor. The first lead and the second lead of adjacent metal oxide varistors, when placed in a stacked arrangement, are arranged, preferably asymmetrically, so as not to interfere with one another, thereby result in a more compact stacking of metal oxide varistors, as compared to arrangements known to the state of the art. The stacked arrangement of metal oxide varistor can be mounted on printed circuit boards, in addition to a variety of other uses.
Abstract:
The present invention may provide a surge protection device, which may include a reference node, first, second, and third nodes, a first arcing section (GAP) coupled between the first and second nodes, and configured to receive a surge voltage from the first node, a first metal oxide varistor (MOV) coupled between the second and reference nodes, and configured to reduce the surge voltage to a first sub-surge voltage at the second node, a second arcing section (GAP) coupled between the second and third nodes, and configured to receive the first sub-surge voltage from the second node, and a second metal oxide varistor (MOV) coupled between the third and reference nodes, and configured to reduce the first sub-surge voltage to a second sub-surge voltage at the third node.
Abstract:
A material composition having a core-shell microstructure suitable for manufacturing a varistor having outstanding electrical properties, the core-shell microstructure of the material composition at least comprising a cored-structure made of a conductive or semi-conductive material and a shelled-structure made from a glass material to wrap the cored-structure, and electrical properties of the varistors during low temperature of sintering process can be decided and designated by precisely controlling the size of the grain of the cored-structure and the thickness and insulation resistance of the insulating layer of the shelled-structure of material composition.
Abstract:
Spacing of metal oxide varistors (“MOVs”) when used for surge suppression or surge protection will determine the number that can be used and the amount of protection achieved in a limited space. By changing the way the leads are attached to the metal oxide varistors (“MOVs”), tighter spacing, higher densities, and more surge suppression and protection can be placed in the same sized location. Leads are attached to metal oxide varistors (“MOVs”) to allow the metal oxide varistors (“MOVs”) to be placed side by side without the lead of one metal oxide varistor (“MOV”) interfering with the lead of a different metal oxide varistor (“MOV”)