Abstract:
The disclosure relates to a radio frequency (RF) and/or microwave power amplification device which is intended, for example, for a radio communication terminal, comprising means for shielding the device and means for controlling the power delivered as output from said device, said power-control means comprising a power servo loop having power-amplification means, reference means, detection means and comparison means. The aforementioned control means also comprise at least one sensor to detect the energy radiated inside the device.
Abstract:
Methods and systems for processing signals are disclosed herein. In one aspect of the invention a circuit for processing signals may comprise a triple well (TW) NMOS transistor coupled to an amplifier core. The TW NMOS transistor may track process and temperature variations (PVT) of at least one NMOS transistor within the amplifier core. A drain of the TW NMOS transistor may be coupled to a first inductor and the first inductor may be coupled to a first voltage source. The first voltage source may generate a standard voltage of about 1.2V. A source of the TW NMOS transistor may be coupled to a second inductor and the second inductor may be coupled to the first voltage source. A gate of the TW NMOS transistor may be coupled to a second voltage source, where the second voltage source may generate a standard voltage of about 2.5V.
Abstract:
A dynamically varying linearity system “DVLS” capable of varying the linearity of a radio frequency (RF) front-end of a communication device responsive to receiving a condition signal indicating a desired mode of operation of a transmitter. The DVLS may include a condition signal indicative of the desired mode of operation and a controller that adjusts the linearity of the transmitter responsive to the condition signal. The condition signal may be responsive to a user interface. The controller, responsive to the condition signal, may dynamically adjust the operating current of the transmitter.
Abstract:
A transmitter includes a dual mode modulator and an amplifier coupled to the dual mode modulator. The dual mode modulator implements a linear modulation scheme during a first mode of the modulator to produce a variable envelope modulated signal. The dual mode modulator implements a non-linear modulation scheme during a second mode of the modulator to produce a constant envelope modulated signal. The amplifier is biased as a linear amplifier during the first mode of the modulator and is biased as a non-linear amplifier during the second mode of the modulator. A feed-forward connection between the dual mode modulator and the amplifier is used to indicate a change in modulation mode and to adjust the bias of the amplifier. A power of the constant envelope modulated signal is increased such that an operating point of the amplifier remains substantially constant during the first and second modes of the modulator.
Abstract:
The AGC threshold of electric intensity level is set by the signal processor portion 107 in response to the measured result of the error rate measuring circuit 109 that measures the error rate of the received signal, and the gain control operation of the gain control circuit 106 is caused to start when the electric field intensity detected by the field intensity detector 105 reaches the threshold of electric intensity level. Accordingly, the optimum AGC threshold of electric intensity level can be set to meet the radio wave situation in which the radio receiver, i.e., the receiving situation of the received signal and also the gain control of the gain controlling means can be achieved to optimize the signal quality of the received signal in the situation of either the IM characteristic or the electric field variation characteristic, e.g., under the environment of the strong electric field IM or the environment in which the electric field is changed strongly.
Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.
Abstract:
An automatic gain control device includes an amplifier for a reception signal, a signal processing unit, a memory, and a control unit. The amplifier can set a gain. The signal processing unit extracts control data from an output from the amplifier and performs information processing for the data. The memory stores the gain setting value of the amplifier. The control unit controls the gain of the amplifier in accordance with a preset control algorithm. On the basis of the result obtained when the control unit computes a gain setting value stored in the memory in accordance with a preset algorithm, the control unit controls the gain of the amplifier in correspondence with operation of switching the frequency of a reception signal, which is accompanied by different frequency monitoring in the compressed mode by the signal processing unit. A radio communication terminal, a control method for an automatic gain control device, a control program for an automatic gain control device, an automatic gain control method, a radio communication system, and a radio communication method are also disclosed.
Abstract:
The present invention provides an amplifying apparatus including, two amplifiers for receiving input signals in common and for outputting their respective amplified signals, a combiner for combining the output signals of the two amplifiers and for outputting a combined signal, the amplifying apparatus which inhibit the distortion component in the output of amplifiers in the transition state. This amplifying apparatus comprises, a predistortion unit for determining a distortion compensation component based on the output of the combiner and for predistorting the input based on the determined distortion compensation component, and a gain control unit for attenuating the inputs to set lower than in the steady state by reducing the gain in the transition from two amplifier operation to one amplifier operation, or in the transition from one amplifier operation to two amplifier operation, or at the time of removal or attachment the amplifiers.
Abstract:
Wireless output chip with a power detector and related manufacturing method. A BiCMOS process is used to integrate a power amplifier and a power detector, which detects power outputted by the power amplifier, into one chip. The power amplifier including bipolar junction transistors is formed by using BJT forming procedures in the BiCMOS process. The power detector includes a charging unit of a capacitor, a controlled current source and a reference current source constructed by metal-oxide-semiconductor transistors formed by MOS forming procedures in the BiCMOS process. Thus, the power detector and the power amplifier can be integrated into one chip using the low-cost BiCMOS process.
Abstract:
A power control loop for a power amplifier is disclosed. Embodiments of the power control loop include deriving a secondary control signal. The secondary control signal may be used to control a gain applied to the power signal in the power control loop and to control a supply current or voltage delivered to a power amplifier.