Abstract:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
Abstract:
A system in a vehicle suspension having an actuator includes a clamp circuit powered by movement of the actuator to generate a passive damping characteristic of the actuator.
Abstract:
A multiplexing apparatus multiplexes between processing units and a battery unit of a vehicle which are connected to one another by wire harnesses, by grouping a variety of on-board controlled objects into a plurality of neighboring controlled objects and controlling each of respective processing units. The wire harness has electric conductors of which the outer peripheral portion are covered with a first insulating layer, an electric conductivity layer which covers the electric conductors, a second insulating the peripheral portion of the electric layer which covers conductivity layer, a circuit for applying an electric potential to the electric conductivity layer, and a monitor for the electric potential of the electric conductivity layer.
Abstract:
The strut comprises a ball bearing (42) located below the lower retainer ) of the spring (4). The ball bearing (42) is centered on an eccentric collar (27) in order to shift the center of the ball bearing (42) by a distance e from the axis of the shock absorber. Rotation between the body (2) of the shock absorber and the hub holder (5) displaces the center of the ball bearing (42), which shifts the lower retainer (41) accordingly. Using a suitable measuring bench, the strut is adjusted precisely upon the assembling thereof.
Abstract:
A system uses multiple tilt sensors mounted to the vehicle frame and the vehicle suspension system to detect lateral acceleration and lateral load transfer. The system uses these measurements to determine a lateral load transfer ratio indicative of an actual roll moment compared to a maximum roll moment. The measurements from the tilt sensors are also used to calculate an effective center of gravity height. A display coupled to the system provides the vehicle operator with a read out of the load transfer ratio and effective center of gravity height. The display enables the vehicle operator to more completely understand the nature of the vehicle load and thereby allow the vehicle operator to avoid conditions likely to lead to a vehicle rollover accident.
Abstract:
An apparatus for driving electrical loads provided at a vehicle by feeding power to the electrical loads, includes a power source for feeding power to a plurality of the electrical loads provided at a vehicle. The plurality of electrical loads are divided into more than one group. Each of the groups is driven by each of a plurality of load drive circuits by feeding power to each of the load drive circuits from the power source, provided at the vicinity of each of set places in the vehicle at which a group of the electrical loads are concentratedly arranged. A power line is connected to the battery, wherein each of the load drive circuits has a pair of power input terminals, and the power line connected to the battery is branched into two branch power wires. Each of the branch power wires is connected to a power input terminal of each of a first two load drive circuits of the load drive circuits. Another input terminal of each of the first two load drive circuits is connected to a power input terminal of a neighboring load drive circuit by a mutual connection power wire, respectively. One of two power input terminals of one of the neighboring two remaining load drive circuits is connected to one input terminal of the other load drive circuit. The branch power wires, the load drive circuits and the mutual connection power wires compose an electrical connection loop.
Abstract:
An actively controlled automotive suspension system comprises a hydraulic cylinder disposed between a vehicle body and a suspension member pivotably mounted on the vehicle body, a pressurized fluid source connected to the hydraulic cylinder, a pressure accumulator connected to the hydraulic cylinder for absorbing pressure fluctuation in the hydraulic cylinder, a variable throttling orifice, interposed between the hydraulic cylinder and the accumulator, for variably restricting fluid flow, a pressure control valve for adjusting fluid pressure in the hydraulic cylinder, sensors for monitoring state of a vehicular attitude change, and a controller associated with both of the pressure control valve and the variable throttling orifice for controlling magnitude of fluid pressure in the hydraulic and a throttling ratio of the throttling orifice.
Abstract:
A fail-safe system for a multiple task control system which has a plurality of control channels for performing mutually independent and mutually distinct control functions detects failure in one of the control channels. In response, the fail-safe system discriminates between a failure which occurs at a common sensor which is commonly utilized for more than one control channels or a common control channel which are commonly used for more than one control channels, and a failure at other sensors for monitoring parameters to be used for a singular control channel or individual control channel for single control function. The fail-safe system performs mutually distinct modes of fail-safe operation depending upon the result of the discrimination.
Abstract:
A vehicle height control device stops the operation of vehicle height adjustment if the vehicle height at a wheel can not be increased to a target value during a height increasing operation within a predetermined time period. Automatic restoration of vehicle height adjustment occurs after a predetermined period if the vehicle height has increased to a height greater than a threshold value. However, if such a detection is not made, vehicle height adjustment is locked up.
Abstract:
Arranged between hydropneumatic supporting units of a vehicle levelling system is an active bypass and feed system, by means of which hydraulic medium can be displaced between supporting units of different axles or sides of the vehicle, at the same time bypassing a reservoir, in order to counteract pitching and rolling movements of the vehicle.