Abstract:
An electron emission device having a narrow electron energy range and excellent electron emitting efficiency, and an electron microscope using the electron emission device. An electron emission device having a laminated structure in which a first electrode, an electron accelerating layer made of an insulating film, and a second electrode are laminated in this order, in which the second electrode through which electrons transmit and from whose surface electrons emit, and the energy width of the emitted electrons is 100 meV or more and 600 meV or less. For example, graphene having one or more layers and 20 layers or less can be used as the second electrode, and hexagonal boron nitride can be used as the insulating film.
Abstract:
Provided in the present disclosure is an electron emitting element 10 including a laminated structure in which a first electrode 1, an electron accelerating layer 6 made of an insulation film, a second electrode 3, and a cover film 7 are laminated in that order, in which the second electrode is an electrode which transmits electrons and emits electrons from a surface thereof, and the cover film is a film which transmits electrons, is a protective film made of a material different from that of the second electrode, and constitutes an electron emission surface 5.
Abstract:
An electron emission device having a narrow electron energy range and excellent electron emitting efficiency, and an electron microscope using the electron emission device. An electron emission device having a laminated structure in which a first electrode, an electron accelerating layer made of an insulating film, and a second electrode are laminated in this order, in which the second electrode through which electrons transmit and from whose surface electrons emit, and the energy width of the emitted electrons is 100 meV or more and 600 meV or less. For example, graphene having one or more layers and 20 layers or less can be used as the second electrode, and hexagonal boron nitride can be used as the insulating film.
Abstract:
A tunneling electro source, an array thereof and methods for making the same are provided. The tunneling electron source is a surface tunneling micro electron source having a planar multi-region structure. The tunneling electron source includes an insulating substrate, and two conductive regions and one insulating region arranged on a surface of the insulating substrate. The insulating region is arranged between the two conductive regions and abuts on the two conductive regions. Minimum spacing between the two conductive regions, which equals to a minimum width of the insulating region, is less than 100 nm.
Abstract:
A vacuum electron tube comprises at least one electron-emitting cathode and at least one anode arranged in a vacuum chamber, the cathode having a planar structure comprising a substrate comprising a conductive material, a plurality of nanotube or nanowire elements electrically insulated from the substrate, the longitudinal axis of the nanotube or nanowire elements substantially parallel to the plane of the substrate, and at least one first connector electrically linked to at least one nanotube or nanowire element so as to be able to apply a first electrical potential to the nanowire or nanotube element.
Abstract:
An electron emission device includes a number of second electrodes intersected with a number of first electrodes to define a number of intersections. The first electrode includes a carbon nanotube layer and a semiconductor layer coated on the carbon nanotube layer. An insulating layer is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the semiconductor layer is sandwiched between the insulating layer and the carbon nanotube layer.
Abstract:
An electron emitting device includes a lower electrode, a surface electrode, an electron acceleration layer between the lower electrode and the surface electrode, and an electrode selecting unit. The electron acceleration layer is made of at least an insulating material. At least one of the lower electrode and the surface electrode is a stripe-pattern electrode including a plurality of unit electrodes that are regularly arranged. The electrode selecting unit sequentially selects, from among the plurality of unit electrodes, a unit electrode to which a voltage is to be applied. A voltage is applied between the lower electrode and the surface electrode to accelerate electrons between the lower electrode and the surface electrode, so that the electrons are emitted from the surface electrode.
Abstract:
An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).