Abstract:
A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode around the opening. The electron emission source may comprise a plurality of graphene thin films vertically supported in the cathode electrode toward the opening.
Abstract:
An electron emission source includes a first electrode, a semiconductor layer, an insulating layer, and a second electrode stacked in that sequence, wherein an electron collection layer is sandwiched between the semiconductor layer and the insulating layer, the electron collection layer is in contact with the semiconductor layer and the insulating layer, and the electron collection layer is a conductive layer to collect electrons.
Abstract:
An electron emission device includes a number of first electrodes and a number of second electrodes intersected with each other to define a number of intersections. An electron emission unit is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the electron emission unit includes a semiconductor layer and an insulating layer stacked together, the semiconductor layer defines a number of holes, the carbon nanotube layer covers the number of holes, and a portion of the carbon nanotube layer is suspended on the number of holes.
Abstract:
Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.
Abstract:
A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode comprising a graphene sheet covering the opening. A method of manufacturing a gate electrode may comprise: forming a graphene thin film on one surface of a conductive film; forming a mask layer having an etching opening on another surface of the conductive film, wherein the etching opening exposes a portion of the conductive film; partially removing the conductive film through the etching opening to partially expose the graphene thin film; and/or removing the mask layer.
Abstract:
A graphene base, including: graphene; and a substrate, wherein the graphene is formed directly on at least one surface of the substrate, and at least about 90 percent of an area of the surface of the substrate does not have a graphene wrinkle.
Abstract:
Graphene is a single atomic layer of sp2-bonded C atoms densely packed into a two-dimensional honeycomb crystal lattice. A method of forming structurally perfect and defect-free graphene films comprising individual mono crystalline domains with in-plane lateral dimensions of up to 200 μm or more is presented. This is accomplished by controlling the temperature-dependent solubility of interstitial C of a transition metal substrate having a suitable surface structure. At elevated temperatures, C is incorporated into the bulk at higher concentrations. As the substrate is cooled, a lowering of the interstitial C solubility drives a significant amount of C atoms to the surface where graphene islands nucleate and gradually increase in size with continued cooling. Ru(0001) is selected as a model system and electron microscopy is used to observe graphene growth during cooling from elevated temperatures. With controlled cooling, large arrays of macroscopic single-crystalline graphene domains covering the entire transition metal surface are produced. As the graphene domains coalesce to a complete layer, a second graphene layer is formed, etc. By controlling the interstitial C concentration and the cooling rate, graphene layers with thickness up to 10 atomic layers or more are formed in a controlled, layer-by-layer fashion.
Abstract:
An electron emission device having a narrow electron energy range and excellent electron emitting efficiency, and an electron microscope using the electron emission device. An electron emission device having a laminated structure in which a first electrode, an electron accelerating layer made of an insulating film, and a second electrode are laminated in this order, in which the second electrode through which electrons transmit and from whose surface electrons emit, and the energy width of the emitted electrons is 100 meV or more and 600 meV or less. For example, graphene having one or more layers and 20 layers or less can be used as the second electrode, and hexagonal boron nitride can be used as the insulating film.