Abstract:
A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
Abstract:
A motion control device for a vehicle includes a controlling means for maintaining a traveling stability of the vehicle by controlling a braking force of a wheel of the vehicle, a friction coefficient obtaining means for obtaining a friction coefficient of a road surface on which the vehicle travels, a lateral force reference value calculating means for calculating a lateral force reference value acting on the wheel on the basis of the friction coefficient of the road surface and a lateral force actual value obtaining means for obtaining a lateral force actual value acting on the wheel, wherein the controlling means controls the braking force on the basis of a comparison result between the lateral force reference value and the lateral force actual value.
Abstract:
An anti-collision control is provided under circumstances where it is determined that there is a risk of collision between a host vehicle and a preceding vehicle. The anti-collision control utilizes host vehicle information, preceding vehicle information, and surrounding road conditions to determine whether or not a collision with the preceding vehicle can be avoided through a steering operation. If avoidance is determined to be possible, then a shift-hold control is applied to the AT, whereas if avoidance is determined to be impossible, then a down-shift control is applied to the AT.
Abstract:
A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
Abstract:
A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
Abstract:
A stabilizer control apparatus for controlling a torsional rigidity of a stabilizer arranged between a right wheel and a left wheel of a vehicle includes a turning state detecting device for detecting a turning state quantity of the vehicle, and a switching device for switching the torsional rigidity of the stabilizer and including a first position in which a first torsional rigidity is achieved and a second position in which a lower torsional rigidity than the first torsional rigidity is achieved. The switching device switches between the first position and the second position based on the turning state quantity detected by the turning state detecting device. Further, the switching device switching the first position to the second position when a state in which the turning state quantity detected by the turning state detecting device is equal to or smaller than a predetermined value continues for a predetermined time or more.
Abstract:
A rolling motion stability control apparatus restrains a roll increasing tendency of a vehicle, with each wheel of the vehicle being braked by a wheel brake device. A first braking force control device is provided for applying a first braking force to the wheel, when the vehicle is turned to one direction. A second braking force control device is provided for applying a second braking force to the wheel, when the vehicle is turned to the other direction. A terminating control adjustment device is provided for adjusting the braking force control devices to continue the first braking force being applied, until the second braking force is initiated to be applied, when the vehicle is turned to the one direction, and then to the other direction.
Abstract:
In a stabilizer control apparatus for controlling a torsional rigidity of a stabilizer of a vehicle, an actual lateral acceleration and a calculated lateral acceleration are obtained. Then, influence amount caused by the calculated lateral acceleration is set to be greater than influence amount caused by the actual lateral acceleration, when the vehicle is moving straight, whereas the influence amount caused by the actual lateral acceleration is set to be increased, with the turning operation of the vehicle being increased, to actively control the rolling motion of the vehicle body.
Abstract:
A vehicle motion control apparatus is provided for performing a vehicle stability control on the basis of a parameter indicative of lateral margin for a tire on a road. The apparatus includes a steering control device for controlling a relationship between a steering angle and a tire angle to be varied, and a decelerating control device for controlling a vehicle speed to be decreased. The parameter indicative of lateral margin for the tire is monitored, and the steering control device and the decelerating control device are controlled on the basis of the monitored parameter. The steering control device is controlled to decrease the tire angle relative to the steering angle, when the parameter is decreased from a value of relatively large lateral margin to a value of relatively small lateral margin, which is smaller than a first threshold value, and the decelerating control device is controlled to decrease the vehicle speed in addition to the steering control by the steering control device, when the parameter is further decreased to a value of lateral margin smaller than a second threshold value, which is smaller than the first threshold value.
Abstract:
A steering control apparatus obtains a steered amount by which a steered wheel is steered based on a left-and-right braking force difference control amount, a vehicle state control amount, and a steering control amount. The apparatus changes the magnitude of the braking force difference control amount and the magnitude of the vehicle state control amount according to a vehicle speed or to time elapsed from when braking started to be applied to the left and right wheels. Accordingly, the vehicle driving on μ-split road is prevented from being deflected toward a side of higher friction coefficient due to the left-and-right braking force difference when the braking is applied.