Abstract:
A method of forming a thick oxide layer over fins for EG devices and a thinner oxide layer over fins for SG devices on the same substrate and the resulting device are provided. Embodiments include forming a first set of fins over a first portion of a Si substrate; forming a second set of fins over a second portion of the Si substrate spaced from the first portion; forming an iRAD SiO2 layer over the first and second sets of fins; forming a polysilicon layer over the iRAD SiO2 layer over the first set of fins; forming a radical SiO2 layer over the iRAD SiO2 layer over the second set of fins and over the polysilicon layer; forming a mask over the radical SiO2 layer over the second set of fins; removing the polysilicon layer; and removing the mask and the iRAD SiO2 layer from the first set of fins.
Abstract:
One illustrative method disclosed herein includes, among other things, performing a first trench etching process to define an upper portion of a first fin for an NFET device and an upper portion of a second fin for a PFET device, performing a first conformal deposition process to form a conformal etch stop layer around the upper portion of both the first and second fins, with the NFET device masked, performing a second trench etching process to define a lower portion of the second fin, and performing a second conformal deposition process to form a conformal protection layer adjacent the upper portion of the second fin and on sidewalls of the lower portion of the second fin.
Abstract:
A method includes forming a plurality of fins above a substrate. A first mask layer is formed above a first subset of the fins. First portions of the fins in the first subset exposed by a first opening in the first mask layer are removed to define, for each of the fins, a first fin segment and a second fin segment, each having a cut end surface. A first liner layer is formed on at least the cut end surface of the first fin segment for each of the fins in the first subset. A second mask layer having a second opening is formed above a second subset of the plurality of fins. An etching process removes second portions of the second subset of fins exposed by the second opening. The first liner layer protects the cut end surface of at least the first fin segment during the removing.
Abstract:
A device includes an isolation region that defines an active region in a semiconducting substrate and a gate structure, wherein the gate structure has an axial length in a long axis direction thereof such that a first portion of the gate structure is positioned above the active region and a second portion of the gate structure is positioned above the isolation region. Additionally, a gate cap layer is positioned above the gate structure, wherein a first portion of the gate cap layer that is positioned above the first portion of the gate structure is thicker than a second portion of the gate cap layer that is positioned above the second portion of the gate structure.
Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
Methods of fabricating circuit structures including FinFET structures are provided, including: providing a substrate and a first material having a first threshold voltage above the substrate, and a second material having a second threshold voltage lower than the first threshold voltage above the first material; forming fins having base fin portions formed from the first material and upper fin portions formed from the second material; providing gate structures over the fins to form one or more FinFET structures, wherein the gate structures wrap around at least the upper fin portions and have an operating voltage lower than the first threshold voltage and higher than the second threshold voltage, so that the upper fin portions define a channel size of the one or more FinFET structures. Circuit structures including FinFET structures are also provided, in which the FinFET structures have a uniform channel size defined only by upper fin portions thereof.
Abstract:
One method disclosed includes, among other things, forming a gate structure above an active region of a semiconductor substrate, wherein a first portion of the gate structure is positioned above the active region and second portions of the gate structure are positioned above an isolation region formed in the substrate, forming a sidewall spacer adjacent opposite sides of the first portion of the gate structure so as to define first and second continuous epi formation trenches comprised of the spacer that extend for less than the axial length of the gate structure, and forming an epi semiconductor material on the active region within each of the first and second continuous epi formation trenches.
Abstract:
A method for forming FinFETs having a capping layer for reducing punch through leakage includes providing an intermediate semiconductor structure having a semiconductor substrate and a fin disposed on the semiconductor substrate. A capping layer is disposed over the fin, and an isolation fill is disposed over the capping layer. A portion of the isolation fill and the capping layer is removed to expose an upper surface portion of the fin. Tapping layer and a lower portion of the fin define an interface dipole layer barrier, a portion of the capping layer operable to provide an increased negative charge or an increased positive charge adjacent to the fin, to reduce punch-through leakage compared to a fin without the capping layer.
Abstract:
Forming a vertical FinFET includes forming a semiconductor fin on a substrate and having a fin mask on an upper surface thereof; laterally recessing the semiconductor fin causing the fin mask; forming a conformal gate liner on the recessed semiconductor fin and the fin mask, wherein the conformal gate liner includes a first portion surrounding the fin mask and a second portion surrounding the recessed fins and being separated from the fin mask by a thickness of the conformal gate liner; forming a gate mask laterally adjacent to the second portion of the conformal gate liner; removing the first portion of the conformal gate liner; removing the gate mask to expose a remaining second portion of the conformal gate liner; and forming a gate contact to the second portion of the conformal gate liner, the remaining second portion of the conformal gate liner defines the gate length.