Abstract:
Methods, systems, and devices for wireless communications are described. An access node may schedule traffic with different levels of priority for communications with a user equipment. The access node may receive a time-sensitive networking time-aware schedule from a first interface via an Ethernet frame that defines a set of periodic time intervals reserved for transmitting traffic with a high-priority (e.g., hard-real time traffic). In some cases, one or more frequency resources may additionally be reserved for the high-priority traffic. Accordingly, during the reserved time intervals, if the high-priority traffic is present, the access node may transmit the high-priority traffic on the reserved frequency resource(s). Outside the reserved time intervals, the access node may schedule lower-priority traffic on the reserved frequency resource(s) in addition to the other resources. Alternatively, high-priority traffic may interrupt previously scheduled lower-priority traffic during the reserved time intervals if high-priority traffic is present.
Abstract:
Methods, systems, and devices for wireless communications are described that provide time synchronization via wireless communications for devices that use strict timing synchronization. A user equipment (UE) may obtain time synchronization via a wireless connection between the UE and a timing source that may be associated with a base station (or another wireless device). In some cases, the timing source may be synchronized at the UE by determining, using periodic synchronization resources, a propagation delay between the UE and the base station that is based on a timing of a line-of-sight instance of a transmission between the base station and the UE. The propagation delay may be used to determine a timing advance value for use in timing synchronization. One or more devices may be coupled with the UE and the UE may provide commands to the one or more devices that are synchronized according to the synchronized timing source.
Abstract:
Methods, systems, and devices for wireless communications are described. A first node (e.g., a user equipment (UE)) may receive a timing synchronization signal from a second node (e.g., a base station) over a cellular wireless communication link. In some aspects, the timing synchronization signal may indicate mapping information to synchronize the first node with the second node. The mapping information may be for synchronizing a first time of a first clock of the first node to a second time of a second clock of a second node. The first node may synchronize the first time of the first clock to the second time of the second clock based at least in part on the mapping information and the synchronization information. The first node may transmit a timing control based on a timing of the second clock to a device connected to the first node via a local wired interface.
Abstract:
Multiple protocol tunnels (e.g., IPsec tunnels) are deployed to enable an access terminal that is connected to a network to access a local network associated with a femto access point. A first protocol tunnel is established between a security gateway and the femto access point. A second protocol tunnel is then established in either of two ways. In some implementations the second protocol tunnel is established between the access terminal and the security gateway. In other implementations the second protocol tunnel is established between the access terminal and the femto access point, whereby a portion of the tunnel is routed through the first tunnel.
Abstract:
Described herein are implementations for using a remote control device to control a target device on a network. An exemplary remote control device may generate a data packet comprising a command for controlling the target device and a network address associated with the target device. The remote control device may establish a connection to an infrastructure device on the network, and transmit the data packet to the infrastructure device. The infrastructure device may multicast the data packet to a plurality of IoT devices on the network. An IoT device, of the plurality of IoT devices, may execute the command based on determining, using the network address, that the IoT device is the target device.
Abstract:
Various aspects are provided for wireless communication channel management. For instance, aspects of an example method are provided, the method including detecting a trigger condition for changing an operating frequency of a wireless communication link between a first device and a second device. In addition, the example method may include obtaining a target operating frequency for the wireless communication link based on detecting the trigger condition. Moreover, the example method may include tuning a transceiver to the target operating frequency. In an example, the first device may be an unmanned aerial vehicle (UAV) and the second device may be a controller associated with the UAV. Additionally, example apparatuses and computer-readable media are provided for wireless communication channel management, the example apparatuses and computer-readable media being configured to perform, or store computer-executable code to perform, the disclosed example methods.
Abstract:
Described herein are implementations for using a remote control device to control a target device on a network via a remote control proxy device. A remote control device may determine an IoT device capable of functioning as a remote control proxy device. The remote control device may generate a data packet comprising a command for controlling the target device and a network address associated with the target device, and transmit the data packet to the IoT device. If the IoT device determines, using the network address, that it is not the target device, the IoT device may either unicast the data packet to the target device or multicast the data packet to multiple intermediate IoT devices on the network.
Abstract:
A new enrollee device is configured for a communication network using an electronic device and a network registrar. The new enrollee device is a headless device that lacks a first user interface for configuring the new enrollee device for the communication network. The electronic device obtains, at a sensor, sensor information that is indicative of a device key associated with the new enrollee device. The electronic device determines the device key based on the sensor information. The device key is provided to the network registrar to cause the network registrar to configure the new enrollee device for the communication network.
Abstract:
Multiple protocol tunnels (e.g., IPsec tunnels) are deployed to enable an access terminal that is connected to a network to access a local network associated with a femto access point. A first protocol tunnel is established between a security gateway and the femto access point. A second protocol tunnel is then established in either of two ways. In some implementations the second protocol tunnel is established between the access terminal and the security gateway. In other implementations the second protocol tunnel is established between the access terminal and the femto access point, whereby a portion of the tunnel is routed through the first tunnel.
Abstract:
An electronic device obtains a device password associated with the new enrollee device to be configured for a communication network. The device password is provided to a network registrar to cause the network registrar to configure the new enrollee device for the communication network. The network registrar performs an enrollment process based upon the device password and provides feedback to the electronic device to indicate whether or not the new enrollee device was successfully added to the communication network. Alternatively, when an electronic device detects the presence of a new enrollee device to be configured for the communication network, the electronic device generates a device password for the new enrollee device and provides the device password to the new enrollee device and to the network registrar, thereby causing the network registrar to initiate an enrollment process for the new enrollee device based upon the device password.