Abstract:
A nanocrystal particle including at least one semiconductor material and at least one halogen element, the nanocrystal particle including: a core comprising a first semiconductor nanocrystal; and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the halogen element is present as being doped therein or as a metal halide.
Abstract:
Disclosed are a conjugate of a metal nanoparticle including a magnetic core and at least one light emitting material linked to the metal nanoparticle through a linker, wherein the linker has an affinity for a biological material and has changed structure after contacting a biological material, a biosensor including the conjugate, and a method of measuring a concentration of specific biological material in a biological sample using the conjugate or the biosensor.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A backlight unit for a liquid crystal display device including an light emitting diode light source; a light conversion layer disposed apart from the light emitting diode light source, wherein the light conversion layer is configured to convert light emitted from the light emitting diode light source to white light and provide the white light to a liquid crystal panel; and a light guide panel disposed between the light emitting diode light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, wherein the semiconductor nanocrystal is coated with a first polymer, and wherein the polymer matrix comprises a thermoplastic second polymer.
Abstract:
A semiconductor nanocrystal-polymer micronized composite that includes: at least one semiconductor nanocrystal; and a polymer surrounding the at least one semiconductor nanocrystal, wherein the polymer includes at least one functional group reactive with the semiconductor nanocrystal, and wherein the semiconductor nanocrystal-polymer micronized composite has a particle diameter of less than or equal to about 70 micrometers (μm) with a standard deviation of less than or equal to about 20 micrometers (μm), and an aspect ratio of more than about 1.0 and less than or equal to about 10.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A cadmium-free, core shell quantum dot, a quantum dot polymer composite, and electronic devices including the quantum dot polymer composite. The core shell quantum dot has an extinction coefficient per gram of greater than or equal to 0.3, an ultraviolet-visible absorption spectrum curve that has a positive differential coefficient value at 450 nm, wherein the core shell quantum dot includes a semiconductor nanocrystal core including indium and phosphorus, and optionally zinc, and a semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the shell including zinc, selenium, and sulfur, wherein the core shell quantum dot has a quantum efficiency of greater than or equal to about 80%, and is configured to emit green light upon excitation.
Abstract:
A display panel may include a light emitting panel, and a color conversion panel. The light emitting panel is configured to emit incident light including a first light and a second light, a luminescent peak wavelength of the first light may be greater than or equal to about 450 nm and less than or equal to about 480 nm and a luminescent peak wavelength of the second light may be greater than or equal to about 500 nm and less than or equal to about 580 nm. The color conversion panel includes a color conversion layer including a conversion region, and optionally, a partition wall defining each region of the color conversion panel. The color conversion region includes a first region corresponding to a red pixel, and the first region include a first composite including a matrix and a plurality of luminescent nanostructures dispersed in the matrix, and in the UV-Vis absorption spectrum, an absorbance ratio at a wavelength of 520 nm with respect to a wavelength of 350 nm may be greater than or equal to about 0.04:1.
Abstract:
A color conversion panel that includes a color conversion layer including two or more color conversion regions, and optionally, a partition wall defining the regions of the color conversion layer, and a display device including the color conversion panel. The color conversion region includes a first region corresponding to a first pixel, and the first region includes a first composite including a matrix and a plurality of luminescent nanostructures dispersed in the matrix. The luminescent nanostructures include a first semiconductor nanocrystal including a Group III-V compound and a second semiconductor nanocrystal including a zinc chalcogenide. The Group III-V compound includes indium, phosphorus, and optionally, zinc or gallium, or zinc and gallium, and the zinc chalcogenide includes zinc, selenium, and sulfur. The luminescent nanostructures further include aluminum and chlorine, and a mole ratio of aluminum to sulfur (Al:S) is less than about 0.15:1, a mole ratio of chlorine to sulfur (Cl:S) is less than about 0.1:1, and a mole ratio of sulfur to selenium (S:Se) is greater than or equal to about 2:1. The luminescent nanostructures don not include cadmium.
Abstract:
A composition including a plurality of quantum dots; a binder polymer; a thiol compound having at least two thiol groups; a polyvalent metal compound; a polymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent.