摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
摘要:
An optical fiber including a surface including a non-covalent multilayer including a light-absorbing material can be used to develop fluorescence microscopy with a lateral resolution of about 5 nm and possibly lower. The non-covalent multilayer can be a highly absorptive thin film, for example a film based on J-aggregates, which can be used with conventional Near-Field Scanning Optical Microscopy.
摘要:
The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
摘要:
A system comprising a plurality of organic photovoltaic cells arranged in a stack disposed between a first electrode and a second electrode, and a resistive load electrically connected across the first electrode and the second electrode. Each cell comprises a rectifying junction at an interface of organic semiconductor materials. There is metal or metal substitute disposed in the stack between each of the cells. At least a first cell and a second cell of the plurality of organic photovoltaic cells have different absorption characteristics. Photocurrent from the plurality of organic photovoltaic cells energizes the resistive load.
摘要:
An optical structure can include a nanocrystal on a surface of an optical waveguide in a manner to couple the nanocrystal to the optical field of light propagating through the optical waveguide to generate an emission from the nanocrystal.
摘要:
A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.
摘要:
Embodiments of the present invention provide for an array, and corresponding method of forming an array, that includes a plurality of light emitting devices. The light emitting devices are disposed over a substrate, and a photodetector detects light emitted through the substrate from the light emitting devices. Further, a substantially constant brightness may be maintained in a plurality of light emitting devices disposed over the upper surface of a substrate in an array. Light emitted through the substrate from each of the light emitting devices is measured, and the voltage level applied to each of the light emitting devices is varied to maintain a substantially constant brightness level of light emitted from the light emitting devices.
摘要:
A light emitting device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.
摘要:
The disclosure relates to a method and apparatus for micro-patterning organic layers of OLEDs. The disclosed methods do not require applying pressure to the film, nor do they require heat treatment, surface treatment or fast release rate of a stamp from the substrate. The disclosed methods are particularly advantageous over the conventional shadow masking techniques for providing large array fabrication with small features. In one embodiment of the disclosure, one or more organic films are selected for the OLED as a function of their individual or combined sublimation temperature. The material is selected in view of the depth and shape of the features that are to be formed in the organic layer. The disclosed embodiments can provide minimum feature size of 13 μm which is suitable for high resolution OLED displays.