Abstract:
A fluoropolymer composition comprising monomers copolymerized in the following percentages by weight: (a) from about 20% to about 95% of a fluoroalkyl monomer, or mixture of monomers, (b) from about 5% to about 80% of at least one of: (i) an alkyl (meth)acrylate monomer having a linear, branched or cyclic alkyl group of from about 6 to about 18 carbons; or (ii) one or more ionizable water solvatable monomers; and (c) from about 0.05% to about 2% non-fluorinated polymerizable nanoparticles.
Abstract:
Provided in the present invention are a method, an apparatus and a system for realizing integrity protection. The method includes the following steps: a relay node (RN) receives a message, from a base station, carrying integrity protection information; the RN provides integrity protection for the transmitted data according to the integrity protection information. The embodiments of the present invention can provide integrity protection for the data that requires the integrity protection, especially for S1-AP messages and X2-AP messages.
Abstract:
There is provided an organic electronic device having an anode, a hole injection layer, a photoactive layer, an electron transport layer, and a cathode. At least one of the photoactive layer and the electron transport layer includes a compound having Formula I where: R1 is the same or different and can be phenyl, biphenyl, naphthyl, naphthylphenyl, triphenylamino, or carbazolylphenyl; and one of the following conditions is met: (i) R2=R3 and is H, phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, or carbazolylphenyl; or (ii) R2 is H or phenyl; and R3 is phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, and carbazolylphenyl; When both R1 are phenyl, R2 and R3 can be 2-naphthyl, naphthylphenyl, arylanthracenyl, 9-phenanthryl, triphenylamino, or m-carbazolylphenyl.
Abstract:
The present invention relates to charge transport compositions. The invention further relates to electronic devices in which there is at least one active layer comprising such charge transport compositions.
Abstract:
The present invention relates to charge transport compositions. The invention further relates to electronic devices in which there is at least one active layer comprising such charge transport compositions.
Abstract:
Compounds are provided which are activators of the enzyme glucokinase and thus are useful in treating diabetes and related diseases, which compounds have the structure where Q is and R1, R2, R3, R4, R5, R6, R7 and R8 are as defined herein or a pharmaceutically acceptable salt thereof. A method for treating diabetes and related diseases employing the above compounds is also provided.
Abstract:
Novel compounds are provided which are GPR119 G protein-coupled receptor modulators. GPR119 G protein-coupled receptor modulators are useful in treating, preventing, or slowing the progression of diseases requiring GPR119 G protein-coupled receptor modulator therapy. These novel compounds have the structure Formula I or Formula IA.
Abstract:
A polymer having at least one urea linkage prepared by: (i) reacting (a) at least one diisocyanate, polyisocyanate, or mixture thereof, having isocyanate groups, and (b) at least one fluorinated compound selected from the formula (I): Rf(CH2CF2)p(CH2CH2)q(R1)r—XH Formula (I) wherein p and q are each independently an integer of 1 to 3; r is 0 or 1; X is —O—, —NH— or —S—; R1 is a divalent radical selected from the group consisting of —S(CH2)n—, n is an integer of 2 to 4; s is an integer of 1 to 50; R2, R3, and R4 are each independently hydrogen or an alkyl group containing 1 to 6 carbon atoms; and Rf is a perfluoroalkyl group having 1 to 6 carbon atoms; and (i) reacting with (c) water, a linking agent, or a mixture thereof and methods for treating substrates therewith.
Abstract:
Compounds of formulae I and II are disclosed, as well as compositions comprising them and methods of their use to treat, prevent and manage serotonin-mediated diseases and disorders:
Abstract:
The present application discloses a method and an equipment for processing the local network type of a base station (BS). The method comprises: when a BS has determined its local network type, it indicates to a user equipment (UE) said local network type; and when the UE receives the indication carrying said local network type of the BS, it can determine, according to said indication, the local network type of the BS. The present application solves the problem of a user being unable to acquire the type of network connected to a BS and accordingly being unable to determine the corresponding connection means, and enriches user experience.