Abstract:
The present disclosure provides a resist utilized in a photolithography patterning process. The resist includes a polymeric material having a plurality of zipper molecules, each including a first zipper portion and a second zipper portion, wherein the first and second zipper portions each include a plurality of zipper branches bonded together in pairs and cleavable to one of thermal energy, radiation energy, and chemical reaction.
Abstract:
The present disclosure provides a method for making a semiconductor device. The method includes forming a first material layer on a substrate; forming a second material layer on the first material layer; forming a sacrificial layer on the second material layer; forming a patterned resist layer on the sacrificial layer; applying a first wet etching process using a first etch solution to the substrate to pattern the sacrificial layer using the patterned resist layer as a mask, resulting in a patterned sacrificial layer; applying an ammonia hydroxide-hydrogen peroxide-water mixture (APM) solution to the substrate to pattern the second material layer, resulting in a patterned second material layer; applying a second wet etching process using a second etch solution to the substrate to pattern the first material layer; and applying a third wet etching process using a third etch solution to remove the patterned sacrificial layer.
Abstract:
Immersion lithography apparatus and method using a shield module are provided. An immersion lithography apparatus including a lens module having an imaging lens, a substrate table positioned beneath the lens module and configured for holding a substrate for processing, a fluid module for providing an immersion fluid to a space between the lens module and the substrate on the substrate table, and a shield module for covering an edge of the substrate during processing.
Abstract:
A photolithography material is provided. The photolithography material is a surface modifying material. The photolithography material includes a polymer (e.g., fluorine polymer) that includes less than approximately 80% hydroxyl groups. In an embodiment, the photolithography material includes less than approximately 80% fluoro-alcohol functional units. Methods of using the photolithography material include as an additive to a photoresist or topcoat layer. The photolithography material may be used in an immersion lithography process.
Abstract:
A system for semiconductor wafer manufacturing, comprises a chamber process path for processing the wafer, and a device operable to remove particles from the wafer by electrostatic and electromagnetic methodologies wherein the device is installed in the chamber process path.
Abstract:
A lithography apparatus includes an imaging lens module; a substrate table positioned underlying the imaging lens module and configured to hold a substrate; and a cleaning module adapted to clean the lithography apparatus. The cleaning module is selected from the group consisting of an ultrasonic unit, a scrubber, a fluid jet, an electrostatic cleaner, and combinations thereof.
Abstract:
A lithography method includes forming a photosensitive layer on a substrate, exposing the photosensitive layer, baking the photosensitive layer, and developing the exposed photosensitive layer. The photosensitive layer includes a polymer that turns soluble to a base solution in response to reaction with acid, a plurality of photo-acid generators (PAGs) that decompose to form acid in response to radiation energy, and a plurality of quenchers having boiling points distributed between about 200 C and about 350 C. The quenchers also have molecular weights distributed between 300 Dalton and about 20000 Dalton, and are vertically distributed in the photosensitive layer such that a first concentration C1 at a top portion of the photosensitive layer is greater than a second concentration C2 at a bottom portion of the photosensitive layer.
Abstract:
A method for fabricating an integrated circuit device is disclosed. The method may include providing a substrate; forming a first material layer over the substrate; forming a patterned second material layer over the substrate; and removing the patterned second material layer with a fluid comprising a steric hindered organic base and organic solvent.
Abstract:
A method of lithography patterning includes forming a first material layer on a substrate; forming a first patterned resist layer including at least one opening therein on the first material layer; forming a second material layer on the first patterned resist layer and the first material layer; forming a second patterned resist layer including at least one opening therein on the second material layer; and etching the first and second material layers uncovered by the first and second patterned resist layers.
Abstract:
A system for semiconductor wafer manufacturing, comprises a chamber process path for processing the wafer, and a device operable to remove particles from the wafer by electrostatic and electromagnetic methodologies wherein the device is installed in the chamber process path.