Abstract:
To provide a novel expanded polystyrene-based resin formed product that is excellent in expandability, mechanical strength, hardness, antistatic property, heat resistance and flame retardancy and does not generate squeak noises, and a production method thereof. Provided is expandable polystyrene-based resin particles having rubber and melamine cyanurate on the surfaces thereof.
Abstract:
A gasket for compressible placement between a first surface and a second surface is disclosed. In one embodiment, the gasket has a cellular metal skeleton embedded in a viscoelastic, pliable, deformable tacky polymer body. The skeleton has multiple strands, which connect to form multiple interconnected cells or pores. The skeleton, prior to being encapsulated in the tacky polymer body, is typically about 75% or more void space. The void space is substantially filled in the manufacture of the gasket, with the tacky uncured polymer. The uncured polymer will set up or cure, and then the gasket may be used.
Abstract:
A method for treating foam is provided. The method includes providing a foam blank having a thickness, disposing an electrolyte within the foam blank, compressing the foam blank such that the thickness of the foam blank is reduced and drying the foam blank. The method may assist with providing thin electrolyte doped foam.
Abstract:
Aerogel, calcined articles, and crystalline articles comprising ZrO2. Exemplary uses of the crystalline metal oxide articles include dental articles (e.g., restoratives, replacements, inlays, onlays, veneers, full and partial crowns, bridges, implants, implant abutments, copings, anterior fillings, posterior fillings, and cavity liner, and bridge frameworks) and orthodontic appliances (e.g., brackets, buccal tubes, cleats, and buttons).
Abstract:
This invention relates to coated polyurethane foams and to a process for preparing coated polyurethane foams. More specifically, these coated polyurethane foams comprise (a) a polyurethane foam substrate, and (b) at least one bilayer of a coating composition on the foam substrate which comprises (1) a layer of a positively or negatively charged carbon allotrope, and (2) a layer of a positively or negatively charged polymer. When the carbon allotrope is positively charged, the other material is negatively charged, and vice versa. The final product (i.e. coated polyurethane foam) contains at least 1% by weight of the coating composition, based on 100% by weight of the coated polyurethane foam. The foams described herein have a surface resistivity of less than or equal to 1012 ohms per square.
Abstract:
The invention pertains to a method for manufacturing a formed body with a cavity structure for the sound and/or heat insulation of buildings. According to the invention, pre-foamed polystyrene particles are compressed into a formed body in a mold or on a conveyor belt system under the influence of heat and/or pressure, wherein the degree of compression amounts to 0.2-0.8, preferably 0.3 to 0.7, particularly 0.4 to 0.6, such that a communicating cavity volume is preserved in the formed body. The invention furthermore pertains to a formed body for the sound and/or heat insulation of buildings.
Abstract:
The invention provides methods for modifying one or more properties of porous thin films. In such methods, a formulation comprising a reactive species is applied to the porous thin film and allowed to crosslink. In some embodiments, the crosslinked network thus formed imparts increased mechanical strength and wear resistance to the porous thin films.
Abstract:
The present invention relates to a method of manufacturing a fire retardant composite, a composite of a foamed polymer having a coating with fire retardant properties, and also the use of such composites. The method according to the present invention comprises the following steps: i) providing beads of foamed polymer, ii) applying a coating on the beads of step i) and iii) shaping the thus coated beads into said composite.
Abstract:
A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.