Abstract:
An apparatus for controlling an operation of a linear compressor includes: a sensorless circuit unit for detecting a current and a voltage applied to a linear compressor and outputting a work operation value corresponding to them; a stroke controller for receiving the work operation value and outputting a switching control signal corresponding to a variation amount of the work operation value; and an electric circuit unit for receiving the switching control signal from the stroke controller and outputting a certain voltage to the linear compressor, accordingly, a TDC of the piston in consideration of an error due to the nonlinear characteristic can be controlled, and thus, an operation efficiency of the linear compressor can be improved.
Abstract:
A tightly closed casing has an inside space for storing coolant gas. A block is accommodated in this casing. A motor includes a stator and a mover. A piston is connected to the mover of the motor. A movable element includes the mover of the motor and the piston. A stationary element includes the stator of the motor and the block. An elastic element has a portion fixed to the movable element and another portion fixed to the stationary element. A cylinder is shiftable in an axial direction with respect the block. A shifting device shifts the cylinder in the axial direction.
Abstract:
An apparatus and a method for controlling operation of a linear motor compressor, by which a linear motor compressor can operate always in an optimum condition by coping with the load variation due to changes in a refrigerator and the circumstances. In more detail, a current peak value at TDCnull0 is detected by comparing a current applied to the linear motor compressor with a formerly detected current, and accordingly the linear motor compressor is operated by a switching control signal generated according to a duty-ratio corresponding to the current peak value.
Abstract:
In an apparatus and a method for controlling a compressor, by setting a stroke reference value so as to be smaller than a maximum stroke value in a maximum load state and operating the reciprocating compressor stably, damage of a reciprocating compressor can be prevented, a cost in a motor design can be reduced, and a size of a motor can be decreased in designing of the motor.
Abstract:
A reciprocating compressor with a linear motor, having a piston (1) reciprocating inside a cylinder (2); a cylinder head (5) provided with suction and discharge orifices (5a, 5b), and a valve means (10) mounted inside the cylinder (2) and having an operative position, seated against the discharge orifice (5b), defined when the top of the piston (1) is within a certain distance (D) from the cylinder head (5), said distance being defined, so that, at the end of the compression stroke of the piston (1), be reached inside the cylinder (2) a determined pressure that will result in a force on the piston (1) opposite to that force which is impelling said piston (1) and which is sufficient to interrupt its compression stroke before impacting the cylinder head (5).
Abstract:
A pump for ultra-pure fluids comprises a flexible diaphragm separating a fluid chamber from an air chamber. The diaphragm creates an airtight seal between the fluid chamber and the air chamber when a self-centering and trapezoidal shaped wedge compressively forces the diaphragm into a trapezoidal shaped perimeter cavity surrounding the chambers. Any leak from the fluid chamber into the air chamber is detected by a fiber optic system comprising two optical fibers that are disposed at an angle that is calculated to enable light to pass between the fibers only in the presence of a liquid having a predetermined index of refraction. The fiber optic system can also be used to determine the stroke of the pump by disposing the fiber optic lines at an angle calculated to reflect light off of the oscillating diaphragm when the diaphragm arrives at a predetermined location.
Abstract:
A variable delivery liquid pump system includes a housing defining an inlet, an outlet and a plunger bore. A rotating shaft includes a cam that defines a fixed displacement distance with each rotation of the shaft. A plunger is slidably positioned in the plunger bore. A supply of liquid at a supply pressure is attached to the inlet by a supply passage. An output control mechanism includes an electronically-controlled flow restriction valve positioned in the supply passage. The plunger retracts less than the fixed displacement distance of the cam during each rotation of the shaft when the flow restriction valve is at least partially closed. The variable delivery pump is particularly suited for use in a hydraulically-actuated fuel injection system.
Abstract:
A stabilizing structure for a throw adjusting eccentric cam in a two-stage reciprocating compressor is provided. The compressor includes a block that has at least one cylinder with an associated compression chamber and piston, a crankshaft that includes an eccentric crankpin, and a reversible motor for rotating the crankshaft in a forward and a reverse direction. An eccentric, two position cam is rotatably mounted over the crankpin. The cam rotates to and operates at a first position relative to said crankpin when the motor is running in the forward direction and rotates to and operates at a second position relative to said crankpin when the motor is running in the reverse direction. The combined eccentricities of the crankpin and the cam cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. There is also provided a control for selectively operating the motor either in the forward direction or in the reverse direction.
Abstract:
A method of partially fabricating a precisely dimensioned fuel pump wherein selected pump elements are partially assembled before those elements are machined. After machining, the partially assembled elements exhibit enhanced concentricity.
Abstract:
An improved method and apparatus for adjusting the flow of a diaphragm pump. The thickness of the diaphragm itself is capable of being adjusted. Full stroke output is thereby reduced in inverse proportion to the increased volume occupied by the diaphragm. Adjusting the thickness of the diaphragm while the pump is operating provides a means of varying pump output without stopping the pump for adjustments or modifications.