Abstract:
A pulse programming method for a non-volatile memory device includes: addressing memory cells to be programmed within the device by selecting corresponding hierarchic decoder transistors; biasing the gate terminals of the memory cells; and programming the memory cells by applying a voltage pulse, regulated by a bias circuit, to the drain terminals of the memory cells. Advantageously, the programming method further comprises a step of precharging an internal node of the bias circuit before starting the programming step, the internal node being connected to a parasitic capacitance of the memory device.
Abstract:
Management of Test Access Port functions of a plurality of components arranged on a single chip by selectively driving the TAP function of each of the components with respective clocks, whilst the further signals for driving the TAP function are used in a shared mode among the various components. Preferably, associated with the aforesaid clocks is a pull-down function for selectively blanking the respective clocks in conditions of non-use. In a preferred way, the aforesaid dedicated clocks are generated on board the chip.
Abstract:
The present invention concerns a bootstrap circuit in DC/DC static converters comprising first current generator means controlled to close in function of a first signal and a recharge circuit of a capacitor. The bootstrap circuit has the characteristic of comprising second current generator means controlled to close with a second signal synchronous with the first signal, the second signal has times and modalities such to send to the capacitor recharge currents such to compensate the discharge of the capacitor itself.
Abstract:
A bipolar transistor is produced by processes employed in the manufacture of CMOS nonvolatile memory devices, and is part of an integrated circuit. The integrated circuit includes a semiconductor substrate having a first type of conductivity, a PMOS transistor formed in said substrate, an NMOS transistor formed in said substrate, and the bipolar transistor. The bipolar transistor includes: a buried semiconductor layer having a second type of conductivity placed at a prescribed depth from the surface of said bipolar transistor, an isolation semiconductor region having the second type of conductivity, in direct contact with said buried semiconductor layer, and suitable for delimiting a portion of said substrate, forming a base region; an emitter region formed within said base region having the second type of conductivity, a base contact region of said transistor formed within said base region having the first type of conductivity, a collector contact region formed within said isolation semiconductor region having the second type of conductivity, wherein said base region has a doping concentration between 1016 and 1017 atoms/cm3.
Abstract:
A process formes a structure incorporating at least one circuitry transistor and at least one non-volatile memory cell of the EEPROM type with two self-aligned polysilicon levels having a storage transistor and an associated selection transistor in a substrate of semiconductor material including field oxide regions bounding active area regions. The process comprises the steps of in the active area regions, forming a gate oxide layer and defining a tunnel oxide region included in the gate oxide layer depositing and partly defining a first polysilicon layer forming an interpoly dielectric layer and removing the interpoly dielectric layer at least at the circuitry transistor depositing a second polysilicon layer selectively etching away the second polysilicon layer at the cell, and the first and second polysilicon layers at the circuitry transistor and selectively etching away the interpoly dielectric layer and the first polysilicon layer at the cell. After forming and before partially defining the first polysilicon layer, the process implants at least at the channel region of the floating-gate storage transistor for adjusting the transistor threshold.
Abstract:
A semiconductor memory includes a plurality of memory cells connected to one another to form a matrix of memory cells. A charge pump is connected to the matrix of memory cells. A plurality of controllable connection elements are provided, with each controllable connection element connected between an output terminal of the charge pump and a respective column line. Connected to the output of the charge pump is the series connection of a first element equivalent to a controllable connection element, and a second element equivalent to a memory cell in a predetermined biasing condition. A voltage regulator is connected between the second equivalent element and the input terminal of the charge pump for regulating the output voltage therefrom based upon a voltage present between terminals of the second equivalent element.
Abstract:
A FLASH memory is organized in a plurality of physical sectors which may be split into a plurality of singularly addressable logic sectors. Each logic sector may include a memory space of a predetermined size and a chain pointer assuming a neutral value or a value pointing to a second logic sector associated with a respective chain pointer at the neutral value. Each logic sector may also include a status indicator assuming at least one of a first value if the logic sector is empty, a second value if the data therein belongs to the logic sector, a third value if the data does not belong to the logic sector, and a fourth value if the data has been erased. Further, each logic sector may include a remap pointer assuming the neutral value or a value pointing directly or indirectly to the chain pointer of a third logic sector.
Abstract:
A system, for use in providing media access control (MAC)/router/switch/gateway features in an on-board communication network in a vehicle, includes MAC controllers configured to provide a MAC port layer controlling exchange of information over a data link, virtual machine (VM) bridge blocks configured to provide a MAC frame layer interfacing with System-on-Chip VMs, a software (SW) Ethernet port configured to receive from a host programming/configuration information for the system, a local memory controller configured to facilitate the MAC controllers, the VM bridge blocks and the SW Ethernet port in cooperating with a local memory (LMEM), and queue handlers configured to provide queue management for the MAC controllers, the VM bridge blocks and the SW Ethernet port, during cooperation with the LMEM via the local memory controller.
Abstract:
A circuit for reading or writing a RAM includes a shift register coupled to the RAM, a test data input, and a test data output. The circuit further includes a control circuit configured to generate a pulse every N clock cycles, each pulse triggering a RAM access operation transferring data between the shift register and the RAM, N being equal to a data width of the RAM divided by a parallel factor, the parallel factor being a number of pins in either the test data input or the test data output configured for parallel data loading.
Abstract:
A device includes a set of processing circuits arranged in subsets, a set of data memory banks coupled to a memory controller, a control unit, and an interconnect network. The processing circuits are configurable to read first input data from the data memory banks via the interconnect network and the memory controller, process the first input data to produce output data, and write the output data into the data memory banks via the interconnect network and the memory controller. The hardware accelerator device includes a set of configurable lock-step control units which interface the processing circuits to the interconnect network. Each configurable lock-step control unit is coupled to a subset of processing circuits and is selectively activatable to operate in a first operation mode, or in a second operation mode.