Abstract:
Methods and apparatus provide increased symbol length with more subcarriers in a fixed-bandwidth system. The subcarriers spacing may be reduced to provide increased symbol length and enable higher throughput. In one implementation, a system compatible with the IEEE P802.11n proposal can use 128 subcarriers in 20 MHz operation to provide increased throughput in lower-bandwidth channel operation.
Abstract:
Noise power is estimated for subcarriers in a multicarrier system by first decoding a received multicarrier signal and then using the decoded signal information and the received signal information to perform the estimation. Soft decision or hard decision decoding may be used. In at least one embodiment, channel estimates are also made using the decoded signal information and the received signal information.
Abstract:
A method for selecting transmission parameters of a multicarrier communication channel comprises setting a power level for active subcarriers of a multicarrier communication channel based on a number of the active subcarriers to achieve a highest channel capacity.
Abstract:
An adaptive interleaver for wideband orthogonal frequency division multiplexed (OFDM) communications permutes a variable number of coded bits per OFDM symbol (Ncbps). The variable number of coded bits is calculated based on individual subcarrier modulation assignments for orthogonal subcarriers of a wideband channel. The interleaver matrix size may be based on the variable number of coded bits per OFDM symbol and the number of subchannels that comprise the wideband channel. The interleaver may add padding bits to the interleaver matrix to fill any remaining positions, and after performing an interleaving operation, the interleaver may prune the padding bits to provide a sequence of interleaved bits for subsequent modulation on the orthogonal subcarriers. A receiver may include an adaptive deinterleaver to reverse the process.
Abstract:
Briefly, in accordance with one embodiment of the invention, bit and power loading may be utilized to select a modulation rate and subcarrier power scaling based on channel state information. As a result, a higher data rate may be utilized for a given signal-to-noise ratio while maintaining a constant bit error rate.
Abstract:
Embodiments of a Machine Type Communication User Equipment (MTC UE), Next Generation Node-B (gNB) and methods of communication are generally described herein. The MTC UE may determine a system timing based on reception of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). The MTC UE may receive, from the gNB, radio resource control (RRC) signaling that indicates one or more parameters of a configurable resynchronization signal (RSS). The RSS may be for resynchronization, by the MTC UE, after the MTC UE awakens from a power save mode. The parameters of the RSS in the RRC signaling may depend on a target coverage of the MTC UE. The MTC UE may determine an updated system timing based on reception of the RSS.
Abstract:
Embodiments of a User Equipment (UE) and methods of communication are generally described herein. If a higher layer parameter altMCS-Table is configured, and a physical downlink shared channel (PDSCH) is assigned by a downlink control information (DCI) format 1, 1B, 1D, 2, 2A, 2B, 2C, or 2D, the UE may, for some subframe/frame configurations, determine a number of physical resource blocks (PRBs) for the transport block as a maximum of: 1; and a floor function applied to a product of a total number of allocated PRBs, a parameter dependent on a special subframe configuration, and a scaling parameter. For other subframe/frame configurations, the UE may determine the number of PRBs for the transport block as a maximum of: 1; and the floor function applied to a product of the total number of allocated PRBs and the scaling parameter.
Abstract:
Technology is discussed for mitigating interference in a wireless communication environment where adjacent cells can have asynchronous Time Division Duplexing configurations. Measurements can be taken at an illuminated evolved Node B (eNodeB) of DownLink (DL) transmissions from a transmit eNodeB. These measurements can be relayed to the transmit eNodeB over a backhaul link and used to make scheduling, transmission power, and/or beam forming decisions to reduce the potential for DL interference. To reduce UpLink (UL) interference, sub-frame specific measurements can be requested by a transmit eNodeB of a User Equipment (UE) that would receive DL transmission from the transmit eNodeB to detect interference from any UEs performing UL transmission to an adjacent eNodeB. The interference measurements can be used by the transmit eNodeB to make scheduling determinations to mitigate the interference.
Abstract:
Embodiments relate to apparatus for wireless interference mitigation within a first User Equipment (UE). The apparatus comprises at least one channel estimator for estimating a first channel transfer function associated with a first received signal designated for the first UE, and for estimating a second channel transfer function associated with a second received, interference, signal. A symbol estimator is responsive to the at least one channel estimator to process at least the first received signal to produce a symbol estimation. A demodulator, which is responsive to the channel estimator, demodulates the symbol estimation to an output representing a received data unit corresponding to the symbol estimation. The demodulator has a processing unit arranged to demodulate the symbol estimation using the first channel transfer function, the second channel transfer function and a respective modulation scheme for at least the first received signal.
Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.