Abstract:
A system may include a sampling circuit, a temperature calibration system, a phase detector, a virtual phase-locked loop, and a sample rate converter. The sampling circuit may be configured to generate a series of digitally-sampled data at a sampling frequency provided by a local clock. The temperature calibration system may be configured to determine a temperature-based timing compensation with respect to the local clock. The phase detector may be configured to estimate an error of the local clock in view of the reference clock. The virtual phase-locked loop may be configured to generate a virtual clock based on the temperature-based timing compensation and the error. The sample rate converter may be configured to generate a corrected series of digitally-sampled data in response to the virtual clock by interpolating the series of digitally-sampled data to correct for the error.
Abstract:
A low voltage lamp includes a boost converter stage and a load. The load may include low voltage light producing elements including low voltage light emitting diodes. The boost converter stage receives an electronic transformer output and includes an inductor coupled to a switch and a switch controller that receives one or more controller inputs. Inductor current may be returned to the transformer when the switch is closed and provided to a rectifier coupled to the load when the switch is open. Controller inputs may include a transformer input that receives the transformer output, a sense input indicating switch current, and a load input indicating load voltage. Controller logic may synchronize assertions of a control signal for the switch with edge transitions of the transformer output to maintain peak inductor current within a specified range and to selectively transfer stored energy in the inductor to the load or back to the transformer.
Abstract:
A power distribution system includes controller of a switching power converter to control the switching power converter and determine one or more switching power converter control parameters. In at least one embodiment, the switching power converter utilizes a transformer to transfer energy from a primary-side of the transformer to a secondary-side of the transformer. In at least one embodiment, the switching power converter control parameters includes a secondary-side conduction time delay that represents a time delay between when the primary-side ceases conducting a primary-side current and the secondary-side begins to conduct a secondary-side current. In at least one embodiment, determining and accounting for this secondary-side conduction time delay increases the prediction accuracy of the secondary-side current value and accurate delivery of energy to a load when the controller does not directly sense the secondary-side current provided to the load.
Abstract:
In accordance with embodiments of the present disclosure, a system may include an impedance estimator configured to estimate an impedance of a load and generate a target current based at least on an input voltage and the impedance, a voltage feedback loop responsive to a difference between the input voltage and an output voltage of the load, and a current controller configured to, responsive to the voltage feedback loop, the impedance estimator, and the input voltage, generate an output current to the load.
Abstract:
An LED lighting device includes an auxiliary power supply that supplies power to a control circuit of the LED lighting device that receives an input from a terminal of a light-emitting diode (LED) string of the lighting device that has a substantially lower voltage than the line voltage to which the lighting device is connected. The terminal may be within the LED string, or may be an end of the string. A linear regulator may be operated from the voltage drop across a number of the LEDs in the string so that the energy wasted by the auxiliary power supply is minimized. In other designs, the auxiliary power supply may be intermittently connected in series with the LED string only when needed. The intermittent connection can be used to forward bias a portion of the LED string when the voltage supplied to the LED string is low, increasing overall brightness.
Abstract:
A lighting system includes one or more methods and systems to control dissipation of excess power in the lighting system when the power into a switching power converter from a leading edge, phase-cut dimmer is greater than the power out of the switching power converter. In at least one embodiment, the lighting system includes a controller that controls dissipation of excess energy in the lighting system to prevent a premature disconnection of the phase-cut dimmer. In at least one embodiment, the controller actively controls power dissipation by generating one or more signals to actively and selectively control power dissipation in the lighting system. By actively and selectively controlling power dissipation in the lighting system, the controller intentionally dissipates power when the power into the lighting system should be greater than the power out to a lamp of the lighting system. In at least one embodiment, the controller creates one or more intermixed and/or interspersed power dissipation phases with one or more switching power converter charging and/or flyback phases.
Abstract:
An energy-efficient consumer device audio power output stage with gain control provides improved battery life and reduced power dissipation without clipping the audio output signal. A power supply having a selectable operating mode supplies the power supply rails to the power amplified output stage. The operating mode is controlled in conformity with an input audio signal level, which may be determined from a volume control setting of the device and/or from a signal level detector that determines the amplitude of the signal being amplified. The gain applied to the audio input signal is reduced for a predetermined time period when a higher output voltage of the power supply is selected, to avoid clipping the audio output signal.
Abstract:
A system for controlling motor switching in a sensorless BLDC having a stator with three stator windings and a permanent magnet rotor. The system includes a controller unit comprising a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage controlled by the controller unit has a plurality of switches and drives two windings of the three stator windings with a pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit calculates a threshold at which the power stage will change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses the threshold.
Abstract:
The system and method disclose for the controlling of sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A motor controller controls a power stage that drives two windings of a set of three windings in the motor with pulse width modulated signal. A plurality of voltage values on an undriven winding of the set of three windings are sampled within a window of time, wherein a period beginning when the driven windings are energized and ending when the driven windings are de-energized encompasses the window of time. The sampled voltage values are processed. When the processed voltage values exceed a threshold, the motor controller changes which two windings are driven.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer operates a switching power circuit during active portions of half-cycles of the AC line voltage source that supplies the dimmer. A control circuit determines the durations of the active portions such that sufficient energy is transferred to operate the lighting devices until a next half-cycle of the AC line voltage, at which time the active portion of the half-cycle is terminated. A high impedance level is presented to the output of the dimmer until the next half-cycle commences.