Abstract:
A method of removing a water-comprising rinse/cleaning material from the surface of a device which includes high aspect ratio features (an aspect ratio of 5 or greater) where sidewalls of the feature are separated by 50 nm or less without causing stiction between the feature sidewall surfaces. The method relies on the use of a low surface tension drying liquid which also exhibits a high evaporation rate. The method also relies on a technique by which the drying liquid is applied. Increasing the evaporation rate of the drying liquid and application of the drying liquid in the form of a vapor helps to eliminate stiction.
Abstract:
A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
Abstract:
A method and apparatus for planarizing magnetically susceptible layers of substrates is provided. A patterned resist is formed on the magnetically susceptible layer, and the substrate is subjected to a plasma immersion ion implantation process to change a magnetic property of the magnetically susceptible layer according to the pattern of the resist material. The substrate is subjected to a plasma material removal process either before or after the implantation process to planarize the surface of the magnetically susceptible layer resulting from the implantation process. The plasma material removal process may be directional or non-directional.
Abstract:
Embodiments disclosed herein generally relate to a process of texturing a transparent conductive oxide layer deposited over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. After the transparent conductive oxide layer is deposited, the layer is textured to increase the haze of the layer. An increase in haze permits the layer to increase light trapping and thus improve the efficiency of a solar cell. A wet etch chemistry that utilizes a component that is less polar than water permits the acidic component, such as nitric acid, to dissociate less and thus etch the transparent conductive oxide to the desired texture. A suitable component is an organic component such as acetic acid which has a dielectric constant substantially below the dielectric constant of water.
Abstract:
Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.
Abstract:
A method and apparatus for matching impedance magnitude and impedance phase for an acoustic-wave transducer load and an RF power source. The acoustic-wave transducer load has a load impedance magnitude and phase. The RF power source has a source impedance magnitude and phase. In one embodiment of the invention, a transformer matches the source and load impedance magnitudes. A capacitor, connected in series with the transformer, matches the source impedance phase to the load impedance phase.
Abstract:
A single wafer cleaning apparatus that includes a rotatable bracket that can hold a wafer, a rinse fluid having a first surface tension, a second fluid having a second surface tension lower than the first surface tension, a first nozzle capable of applying the rinse fluid at a first location on the wafer positioned in the bracket, second nozzle capable of applying the second fluid at a second location on the wafer where the second location is inboard of the first location, and the first nozzle and the second nozzle are capable of moving across the wafer to translate the first location and the second location from the wafer center to the wafer outer edge.
Abstract:
A method for defining magnetic domains in a magnetic thin film on a substrate, includes: coating the magnetic thin film with a resist; patterning the resist, wherein areas of the magnetic thin film are substantially uncovered; and exposing the magnetic thin film to a plasma, wherein plasma ions penetrate the substantially uncovered areas of the magnetic thin film, rendering the substantially uncovered areas non-magnetic. A tool for this process comprises: a vacuum chamber held at earth potential; a gas inlet valve configured to leak controlled amounts of gas into the chamber; a disk mounting device configured to (1) fit within the chamber, (2) hold a multiplicity of disks, spacing the multiplicity of disks wherein both sides of each of the multiplicity of disks is exposed and (3) make electrical contact to the multiplicity of disks; and a radio frequency signal generator electrically coupled to the disk mounting device and the chamber, whereby a plasma can be ignited in the chamber and the disks are exposed to plasma ions uniformly on both sides. This process may be used to fabricate memory devices, including magnetoresistive random access memory devices.
Abstract:
The present invention is a novel cleaning method and a solution for use in a single wafer cleaning process. According to the present invention the cleaning solution comprises ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2), water (H2O) and a chelating agent. In an embodiment of the present invention the cleaning solution also contains a surfactant. And still yet another embodiment of the present invention the cleaning solution also comprises a dissolved gas such as H2. In a particular embodiment of the present invention, this solution is used by spraying or dispensing it on a spinning wafer.
Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.