HIGH DENSITY 3D FERAM
    111.
    发明申请

    公开(公告)号:US20220352208A1

    公开(公告)日:2022-11-03

    申请号:US17868278

    申请日:2022-07-19

    Abstract: A method includes forming a stack of multi-layers, each multi-layer including a first isolation layer, a semiconductor layer, and a first metal layer; etching the stack of multi-layers to form gate trenches in a channel region; removing the first isolation layers and the first metal layers from the channel region, resulting in channel portions of the semiconductor layers exposed in the gate trenches; laterally recessing the first metal layers from the gate trenches, resulting in gaps between adjacent layers of the first isolation layers and the semiconductor layers; forming an inner spacer layer in the gaps; forming a ferroelectric (FE) layer surrounding each of the channel portions and over sidewalls of the gate trenches, wherein the inner spacer layer is disposed laterally between the FE layer and the first metal layers; and depositing a metal gate layer over the FE layer and filling the gate trenches.

    Dual side contact structures in semiconductor devices

    公开(公告)号:US11482595B1

    公开(公告)日:2022-10-25

    申请号:US17238983

    申请日:2021-04-23

    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.

    Semiconductor devices with backside air gap dielectric

    公开(公告)号:US11443987B2

    公开(公告)日:2022-09-13

    申请号:US16888217

    申请日:2020-05-29

    Abstract: A method includes providing a structure having transistors, an isolation structure over the transistors, metal plugs through the isolation structure and connecting to the transistors, and a trench with the isolation structure and the metal plugs as sidewalls. The method further includes forming a dielectric liner on the sidewalls of the trench and over the isolation structure and the metal plugs. The dielectric liner is thicker at an opening portion of the trench than at another portion of the trench so that an air gap is formed inside the trench and the air gap is surrounded by the dielectric liner. The method further includes depositing a sacrificial layer over the dielectric liner and over the air gap and performing CMP to remove the sacrificial layer and to recess the dielectric liner until the isolation structure and the metal plugs are exposed. The air gap remains inside the trench.

    Using a liner layer to enlarge process window for a contact via

    公开(公告)号:US11361986B2

    公开(公告)日:2022-06-14

    申请号:US16808902

    申请日:2020-03-04

    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a substrate, a first contact layer, and a gate electrode. The first contact layer overlies the substrate and the gate electrode overlies the substrate and is laterally spaced from the first contact layer. A first spacer structure surrounds outermost sidewalls of the first contact layer and separates the gate electrode from the first contact layer. A first hard mask structure is arranged over the first contact layer and is between portions of the first spacer structure. A first contact via extends through the first hard mask structure and contacts the first contact layer. A first liner layer is arranged directly between the first hard mask structure and the first spacer structure.

Patent Agency Ranking