Abstract:
A system to form a wet soluble lithography layer on a semiconductor substrate includes providing the substrate, depositing a first layer comprising a first material on the substrate, and depositing a second layer comprising a second material on the substrate. In an embodiment, the first material comprises a different composition than the second material and one of the first layer and the second layer includes silicon.
Abstract:
The present invention includes a lithography method comprising forming a first patterned insist layer including at least one opening therein over a substrate. A water-soluble polymer layer is formed over the first patterned resist layer and the substrate, whereby a reaction occurs at the interface of the first patterned resist layer and the water-soluble polymer layer. The non-reacted water-soluble polymer layer is removed. Thereafter, a second patterned resist layer is formed over the substrate, wherein at least one portion of the second patterned resist layer is disposed within the at least one opening of the first patterned resist layer or abuts at least one portion of the first patterned resist layer. The substrate is thereafter etched using the first and second patterned resist layers as a mask.
Abstract:
A lithography apparatus includes an imaging lens module; a substrate table positioned underlying the imaging lens module and configured to hold a substrate; a fluid retaining module configured to hold a fluid in a space between the imaging lens module and a substrate on the substrate stage; and a heating element configured in the fluid retaining module and adjacent to the space. The heating element includes at least two of following: a sealant insoluble to the fluid for sealing the heating element in the fluid retaining module; a sealed opening configured in one of top portion and side portion of the fluid retaining module for sealing the heating element in the fluid retaining module; and/or a non-uniform temperature compensation device configured with the heating element.
Abstract:
A system for displaying images includes a liquid crystal display panel. The liquid crystal display panel comprises a color filter substrate having a light shielding layer on a peripheral area and a common electrode on a display area and the peripheral area, and an array substrate having a pixel electrode on the display area and a separate and independent electrode with a fixed voltage on the peripheral area. The liquid crystal display panel further comprises a liquid crystal layer between the color filter substrate and the array substrate.
Abstract:
The present disclosure provides a method for etching a substrate. The method includes forming a resist pattern on the substrate; applying an etching chemical fluid to the substrate, wherein the etching chemical fluid includes a diffusion control material; removing the etching chemical fluid; and removing the resist pattern.
Abstract:
An overlay mark is provided. A first material layer is formed on a substrate, and then a first trench serving as a trench type outer mark is formed in the first material layer. The first trench is partially filled with the first deposition layer. A second material is formed over the first trench and the first deposition layer. A second trench is formed exposing the first deposition layer within the first trench. The second trench is partially filled with a second deposition layer forming a third trench. A third material layer is formed on the substrate to cover the second deposition layer and the second material layer. A step height is formed on the third deposition layer between the edge of the first trench and the center of the first trench. A raised feature serving as an inner mark is formed on the third deposition layer.
Abstract:
The present disclosure provides a method of dual damascene processing. The method includes providing a substrate having vias formed therein; forming an under-layer in the vias and on the substrate; applying a solvent washing process to the under-layer; forming a silicon contained layer on the under-layer; patterning the silicon contained layer (SCL) to form SCL openings exposing the under-layer within the SCL openings; and etching the substrate and the under-layer within the SCL openings to form trenches.
Abstract:
Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank; and
Abstract:
A method of lithography patterning includes forming a first material layer on a substrate; forming a first patterned resist layer including at least one opening therein on the first material layer; forming a second material layer on the first patterned resist layer and the first material layer; forming a second patterned resist layer including at least one opening therein on the second material layer; and etching the first and second material layers uncovered by the first and second patterned resist layers.