Abstract:
A remote alarm for use with a wearable defibrillator. The remote alarm may be a wearable remote device including a strap for disposing the wearable remote device on a wrist of a patient and communications circuitry disposed in the wearable remote device to wirelessly communicate with the wearable defibrillator. The wearable remote device may be configured to receive alarms, voice messages and prompts issued by the wearable defibrillator and to repeat those alarms, voice messages and prompts in a manner that can more easily be perceived by a patient wearing the wearable defibrillator or a bystander. The wearable remote device may further be configured to take certain actions depending upon the content of the communication, such as sending a telephone message to alert emergency personnel to the identity, location and medical condition of the patient, or sending an email to a friend, caregiver, or relative.
Abstract:
A wearable monitoring device includes a plurality of cardiac sensing electrodes, a monitor, at least one motion sensor, and a controller. The plurality of cardiac sensing electrodes are positioned outside a body of a subject and to detect cardiac information of the subject. The monitor administers a predetermined test to the subject, and has a user interface configured to receive quality of life information from the subject. The at least one motion sensor is positioned outside the body of the subject and to detect subject motion during the predetermined test. The controller is communicatively coupled to the plurality of cardiac sensing electrodes, the monitor, and the at least one motion sensor, and receives and stores the detected cardiac information, the quality of life information, and the detected subject motion.
Abstract:
A wearable medical device includes a water-resistant/waterproof housing configured to be continuously or nearly continuously worn by a patient and formed from a water-resistant/waterproof material, and configured to prevent ingress of water in a wet environment; a plurality of ECG sensing electrodes configured to be removably coupled to the patient and to monitor an ECG of the patient; a plurality of therapy electrodes configured to be removably coupled to the patient and to deliver at least one therapeutic pulse to the patient; and a control unit disposed within the water-resistant/waterproof housing and configured to be electrically coupled to the plurality of ECG sensing electrodes and the plurality of therapy electrodes, the control unit configured to receive the monitored ECG of the patient, and responsive to detection of a cardiac arrhythmia, provide the at least one therapeutic pulse to the patient via the at least one therapy electrode.
Abstract:
A wearable device and method of monitoring the condition of a patient. The wearable device includes at least one sensor and at least one processor operatively connected to the at least one sensor. The wearable device also includes an operator interface device operatively connected to the at least one processor. The at least one processor causes the device to allow for customization of at least one output message to be delivered via the operator interface device.
Abstract:
A system and method for conservation of battery power in a portable medical device is provided. In one example, a processor arrangement includes a dual core processor having an ARM core and a DSP core. The portable medical device includes a monitor having the dual core processor, in communication with a belt node processor. The DSP core receives physiological data from the physiological sensor and sends the physiological data to the ARM core. The ARM core analyzes the physiological data to determine if a treatment sequence is necessary. The DSP core receives physiological data from the at least one physiological sensor and sends the physiological data to the ARM core, and also analyzes the physiological data to determine proper timing of the treatment sequence by the at least one therapy delivery device to synchronize at least one pulse of the treatment sequence with the physiological data.
Abstract:
An ambulatory medical device including a plurality of electrodes configured to be disposed at spaced apart positions about a patient's body, an electrode signal acquisition circuit, and a monitoring circuit. The acquisition circuit has a plurality of inputs each electrically coupled to a respective electrode of the plurality of electrodes and is configured to sense a respective signal provided by a plurality of different pairings of the plurality of electrodes. The monitoring circuit is electrically coupled to an output of the acquisition circuit and is configured to analyze the respective signal provided by each of the plurality of different pairings and to instruct the acquisition circuit to select at least one of the plurality of different pairings to monitor based on at least one of the quality of the respective signal, a phase difference between the respective signal and that of other pairings, a position of electrodes relative to the patient's body, and other criteria.
Abstract:
A wearable therapeutic device that includes a garment configured to contain an external defibrillator. The garment is configured to house at least one of an alarm module and a monitor and to house a first therapy electrode and a second therapy electrode. The garment is also configured to releasably receive a receptacle that contains a conductive fluid proximate to at least one of the first therapy electrode and the second therapy electrode, and to electrically couple the receptacle with the garment.
Abstract:
In at least one example, a medical device is provided. The medical device includes at least one therapy electrode, at least one electrocardiogram (ECG) electrode, at least one acoustic sensor, and at least one processor coupled with the at least one acoustic sensor, the at least one ECG electrode, and the at least one therapy electrode. The at least one processor can receive at least one acoustic signal from the at least one acoustic sensor, receive at least one electrode signal from the ECG electrode, detect at least one unverified cardiopulmonary anomaly using the at least one electrode signal, and verify the at least one unverified cardiopulmonary anomaly with reference to data descriptive of the at least one acoustic signal.
Abstract:
A wearable monitoring device includes a plurality of cardiac sensing electrodes, a monitor, at least one motion sensor, and a controller. The plurality of cardiac sensing electrodes are positioned outside a body of a subject and to detect cardiac information of the subject. The monitor administers a predetermined test to the subject, and has a user interface configured to receive quality of life information from the subject. The at least one motion sensor is positioned outside the body of the subject and to detect subject motion during the predetermined test. The controller is communicatively coupled to the plurality of cardiac sensing electrodes, the monitor, and the at least one motion sensor, and receives and stores the detected cardiac information, the quality of life information, and the detected subject motion. The controller further communicates the stored detected subject motion and the quality of life information to a remote computer.
Abstract:
A system and method for conservation of battery power in a portable medical device is provided. In one example, a processor arrangement that includes a plurality of processors is implemented. At least one of these processors is configured to execute the critical functions of the medical device, while one or more other processors assume a reduced service level, thereby drawing significantly less power. According to this arrangement, the medical device conserves energy by drawing the additional electrical power needed to activate the additional processing power only when needed.