Abstract:
A fusion gene encoding M. taiwanensis WR-220 keratinase is disclosed. The fusion comprises: (a) a first DNA sequence encoding a protein secretion signal peptide, located at the N-terminus of the fusion gene; (b) a second DNA sequence encoding an inhibitory domain of M. taiwanensis WR-220 keratinase, linked in translation frame with the first DNA sequence; and (c) a third DNA sequence encoding a catalytic domain of M. taiwanensis WR-220 keratinase, linked in translation frame with the second DNA sequence, wherein the fusion gene is a non-naturally occurring chimeric DNA. Also disclosed are a method for preparation of the catalytic domain of M. taiwanensis WR-220 keratinase, and use of the M. taiwanensis WR-220 keratinase.
Abstract:
Methods and apparatuses for portable mass spectrometry are disclosed. The apparatuses comprise at least one source of ionized analyte, at least one frequency scanning subsystem, at least one detector, and optionally at least one vacuum pump, and are portable. In some embodiments, the apparatuses comprise multiple sources of ionized analyte and/or are configured to obtain mass spectra of a large analyte, such as analyte with an m/z ratio of at least 105, or analyte with a molecular weight of at least 105 Da, as well as mass spectra of small molecule analyte. In some embodiments, the methods comprise obtaining mass spectra with a portable apparatus described above.
Abstract:
An isolated monoclonal antibody or an antigen-binding fragment thereof is disclosed. The antibody or the antigen-binding fragment is characterized by: (a) having a specific binding affinity to epithelial cell adhesion molecule (EpCAM) comprising the amino acid sequence of SEQ ID NO: 1; (b) having a specific binding affinity to cancer cells expressing EpCAM said cancer cells being selected from the group consisting of oral cancer cells, nasopharyngeal cancer cells (NPC), colorectal cancer cells, and ovarian cancer cells; and (c) having no binding affinity to human umbilical vein endothelial cell (HUVEC) and normal nasal mucosal epithelia (NNM). Also disclosed is an isolated monoclonal antibody or an antigen-binding fragment thereof that has a specific binding affinity to an epitope within the sequence of KPEGALQNNDGLYDPDCDE (SEQ ID NO: 63) located within the EGF-like domain II of epithelial cell adhesion molecule (EpCAM). Methods of using the same are also disclosed.
Abstract translation:公开了分离的单克隆抗体或其抗原结合片段。 抗体或抗原结合片段的特征在于:(a)对包含SEQ ID NO:1的氨基酸序列的上皮细胞粘附分子(EpCAM)具有特异性结合亲和力; (b)对表达EpCAM的癌细胞具有特异性结合亲和力,所述癌细胞选自口腔癌细胞,鼻咽癌细胞(NPC),结肠直肠癌细胞和卵巢癌细胞; 和(c)对人脐静脉内皮细胞(HUVEC)和正常鼻粘膜上皮细胞(NNM)没有结合亲和力。 还公开了与位于上皮细胞粘附分子(EpCAM)的EGF样结构域II内的KPEGALQNNDGLYDPDCDE(SEQ ID NO:63)的序列内的表位具有特异性结合亲和力的分离的单克隆抗体或其抗原结合片段 )。 还公开了使用该方法的方法。
Abstract:
Methods for rescuing learning, memory and/or motor function deficits associated with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are disclosed. The method comprises: a) administering to an animal having FTLD-U a therapeutically effective amount of an autophagy inducer; b) causing a decrease in the amount of ubiquitinated TDP-43 aggregation forms in the brain of the animal; and c) causing an improvement of the learning, memory capacities and/or motor function of the animal.
Abstract:
The present invention relates to a transgenic plant with increased trace element contents and a method for producing the same. In particular, the transgenic plant is incorporated by a polynucleotide encoding an iron-regulated protein 1 (IRP1/IMA1) or IRP1-like (IRL/IMA3) polypeptide, which facilitate uptake and circulation of the trace elements into the plant. Also provided is a method for treating trace element deficiency by administrating to a subject in need a composition comprising a transgenic plant as described or an edible tissue or part thereof.
Abstract:
A torrefaction system includes at least one pool containing a liquid heat transfer agent and a conveyor system. The heat transfer agent provides thermal contact with biomass fragments to heat the biomass fragments into biocoal. The conveyor system transports the biomass through the at least one pool in a first direction and transporting the biocoal in a second direction opposite to the first direction in the at least one pool. The heat transfer agent may be oil, paraffin, or molten salt. The conveyor system transports a continuous stream of the biomass fragments into the pools. The torrefaction apparatus further includes a gas collecting system that collects and separates condensable volatile organic compounds during the torrefaction process.
Abstract:
Novel method and reagents for generating reversibly tagged saccharides, aldehydes, carboxyl acids, or orthoacetates useful in analytical and diagnostic applications are disclosed. Saccharides are coupled at the reducing end to tagging moieties comprising a reagent selected from a ortho-diaminobenzoic (DAB)-peptide, an aldo-imidazole or N-methylated aldo-imidazole, or an ortho-phenyldiamine (OPD) or substituted OPD. The tagged saccharide further comprising detectable or functional groups coupled to the tagging moiety are provided. Kits and reagents for chromatography and mass spectrometry are disclosed.
Abstract:
In this study, we used a wound-inducible promoter of the broccoli (Brassica oleracea var. italica) GLUCOSE INHIBITION of ROOT ELONGATION1 (GIR1) gene fused to β-glucuronidase (GUS, pBoGIR1::GUS) as a selectable marker. Transgenic broccoli plants expressing pBoGIR1::GUS appear blue in planta at wounded regions after GUS staining for 30 min. Similarly, the blue color is visible in transgenic Arabidopsis and rice plants expressing pBoGIR1::GUS at wounded areas after GUS staining for 2 h, indicating that this promoter is wound-inducible in both dicots and monocots. GUS staining is very rapid and the partial wounding in this study is a nondestructive method that does not affect further plant growth and development. Thus, pBoGIR1::GUS could serve as an effective substitute for antibiotic- and herbicide-resistance genes in the generation of genetically modified crops.
Abstract:
An expression vector is disclosed, which comprises: a) a polynucleotide sequence encoding a bacteriorhodopsin or a mutant bacteriorhodopsin; b) a multiple cloning site; c) a T7 promoter, d) a polyhistidine tag; e) a first protease cleavage site; f) optionally a second protease cleavage site; and g) optionally a linker; wherein the mutant bacteriorhodopsin comprises the residue corresponding to Asn94 of SEQ ID NO: 1. Also disclosed is a fusion membrane protein expression system, which comprises: a) a polynucleotide sequence encoding a mutant Haloarcula marismortui bacteriorhodopsin/D94N (HmBRI/D94N) or a Haloquadratum walsbyi bacteriorhodopsin (HwBR); b) a target membrane protein; and c) a T7 promoter, operably linked to the mutant HmBRI/D94N or HwBR and the target membrane protein. Host cells comprising the expression vector or the fusion membrane protein expression system and methods of using the same are also disclosed.