Abstract:
According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
Various embodiments are directed toward low cost passive waveguide components. For example, various embodiments relate to passive waveguide components created busing a low cost fabrication technology. In some embodiments, a three-dimensional (3D) printing process is used to create a design mold and a non-conductive structure of the waveguide is formed using a plastic injection molding process. A conductive layer may be formed over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
Abstract:
Various embodiments described herein provide systems and methods for improved performance for power amplifiers, particularly GaN power amplifiers. According to some embodiments, a power amplifier (e.g., GaN power amplifier) utilizes adaptive predistortion and adaptive closed-loop control of the drain current of the power amplifier to achieve improved power amplifier performance.
Abstract:
One aspect related to design of systems and methods for manufacturing products that include technology in skilled areas is configuring a production station for use by an operator without specialized skills. The present invention contemplates an approach to designing a station configurable to perform one or more of incoming inspection, assembly, testing, and branding. A preferred approach includes verifying data associated with units prior to accepting them for incorporation, preventing incorporation of an incorrect unit, and guiding an operator in possible remedial action. This approach includes storing data in a server and making such data substantially instantly accessible to production stations once written in the server. Such data preferably includes software to configure the production station such that the operator need not have specialized skills. A production station designed using this approach is particularly useful in the manufacture of an outdoor unit of a split-mount microwave radio system.
Abstract:
A system and method for protecting a received data stream. Active receivers and standby receivers are provided, each adaptable to receive a data stream on a traffic channel. Plural data processing units are operatively in communication with the receivers. At least one of the plural DPUs provides a switching signal to the receivers to switch the state of the active receiver to standby and the state of the standby receiver to active as a function of a quality measurement of the received data stream via the traffic channel.
Abstract:
In some embodiments, a system comprises a clock, a root node, a radio channel network, and first and second child nodes. The clock may be configured to generate a clock signal. The root node may be configured to generate a first frame including a first payload and a first overhead and generate a second frame including a second payload and a second overhead. The first and second overheads may comprise a synchronization value based on the clock signal. The radio channel network may be in communication with the root node for transmitting the first and second frames. Each first and second child nodes may be configured to perform clock recovery including frequency synchronization using the synchronization value and a respective phase-lock loop.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.
Abstract:
Systems and methods for transceiver communication are discussed herein. An exemplary system comprises a first transceiver unit comprising a first attenuator, a filter module, a gain module, and an antenna. The first attenuator may be configured to attenuate a transmission signal from a second transceiver module over a coaxial cable. The transmission signal may comprise a primary component and a triple transit component. The first attenuator may further be configured to attenuate and provide a reflection signal over the coaxial cable to the second transceiver module. The reflection signal may be based on a reflection of at least a portion of the transmission signal. The filter module configured to filter the transmission signal. The gain module may be configured to increase the gain of the transmission signal. The antenna may be configured to transmit the transmission signal.
Abstract:
Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.