Abstract:
A polypropylene material is provided having increased radiation resistance compared to solely isotactic polypropylene. The material is formed by utilizing a syndiotactic polypropylene. The isotactic polypropylene may be an isotactic metallocene or Ziegler-Natta catalyzed polypropylene and may include an amount of syndiotactic polypropylene. The material may be used in forming a variety of materials that may undergo exposure to radiation, such as sterilization procedures using radiation. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
Abstract:
A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
Abstract:
A method comprising reactively extruding a polyolefin, an acrylate containing compound, and an initiator to form a polyolefin/polyacrylate blend, and applying the blend in a melted form to one or more substrates. A method comprising extruding a metallocene ethylene-propylene random copolymer to form a melt, wherein the copolymer has a melt flow rate of from 0.5 g/10 min. to 2000 g/10 min., and applying the melt to one or more substrates. A method comprising reactively extruding a metallocene ethylene-propylene random copolymer, an acrylate containing compound, and a peroxide to form a polyolefin/polyacrylate blend, wherein the blend has a melt flow rate of greater than 100 g/10 min., and applying the blend in a melted form to one or more substrates.
Abstract:
An opaque polymer film is prepared by admixing high crystalline polypropylene with a microvoid causing filler and extruding to form a sheet that is then biaxially stretched to form an opaque film. End uses for these films include soda bottles, candy wrappers and synthetic paper.
Abstract:
Injection stretch blow molded (ISBM) articles and methods of forming the same are described herein. The ISBM articles generally include a propylene-based impact copolymer.
Abstract:
An apparatus and method for adding an alkali metal promoter into steam and contacting the solution with a dehydrogenation catalyst during a dehydrogenation reaction is disclosed. The apparatus has a first conduit capable of transporting an alkali metal salt solution and a second conduit in fluid communication with the first conduit, the second conduit capable of transporting steam so that the alkali metal salt is dissipated into the steam prior to entry into a dehydrogenation reaction zone.
Abstract:
Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
Abstract:
Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
Abstract:
Asphalt and elastomeric polymer compositions crosslinked with mixed polythiomorpholines or at least one alkyl polysulfide can give polymer modified asphalts (PMAs) with improved properties and/or reduced H2S evolution. When at least one alkyl polysulfide is used to completely or partially replace conventional crosslinkers such as S or MBT, mercaptobenzimidazole (MBI) may be optionally used as a co-crosslinker. The use of mixed polythiomorpholines as crosslinkers provide PMAs with better low temperature profiles (BBR m-values). The use of at least one alkyl polysulfide crosslinker gives PMAs with improved PAV-aged DSR results, and reduced H2S evolution. The use of at least one alkyl polysulfide crosslinker together with MBI may give PMAs with improved PAV DSR Fail Temperatures.