Abstract:
A system for direct imaging and diagnosing of abnormal cells in a target tissue includes a disposable optical speculum and an image acquisition system having the speculum assembled on and mechanically secured thereto. The image acquisition system is arranged to capture at least one of a single image or multiple images or video of cells within the target tissue using at least one of bright field or dark field ring illumination divided into independently operated segments to obtain a plurality of data sets. An image analysis and control unit in communication with the image acquisition system analyzes the data sets and applies algorithms to the data sets for diagnosing abnormal cells.
Abstract:
An optical coherence tomography probe and laser combination device configured for real-time z-directional guidance of the incisional depth of a surgical procedure. It can be used alone or placed within the working channel of an endoscope. The device includes an OCT single mode fiber, and a laser fiber or laser hollow waveguide or electrical surgical wire positioned adjacent to the OCT single mode fiber. The single mode fiber is configured to move laterally when activated by an actuator to scan light data reflected from a sample that is positioned in front of a distal end of the device. The light data can be processed to generate a B-scan image. The device can collect data in real-time during lasing, or immediately prior to and following the cutting. The surgical tool, when coupled to a processor, can deactivate when the B-scan image identifies that the incision is within a predefined tolerance.
Abstract:
The invention describes methods for safely delivering ablation energy to a tissue, e.g., thrombus, in need of ablation therapy. The method uses a catheter adapted for IVUS imaging, ablation, and impedance measurements to monitor the impedance of a tissue receiving ablation energy. In an embodiment, a user may view an IVUS image of the tissue with impedance measurements to determine if it is safe to deliver additional energy. In another embodiment, a processor is configured to determine if it is safe to deliver additional ablation energy based upon the impedance measurement.
Abstract:
An endovascular device monitoring system is provided that determines, based on movement of the endovascular device past a selected reference location, at least one of a movement rate of a endovascular device and position of a distal end of a endovascular device in a body of a patient.
Abstract:
Methods, apparatus and systems for tissue dissection and modification are disclosed herein. A method for tissue dissection and modification may comprise inserting a tissue dissecting and modifying wand (TDM) through an incision in a patient's body. The TDM may comprise a tip having a plurality of protrusions with lysing segments positioned between the protrusions to dissect and/or modify tissue. The TDM may also comprise an energy window positioned on top of the TDM that is configured to deliver energy to modify tissues. After separating tissue using the lysing segment(s) to define a target region, the energy window may be activated and moved around within the target region to modify tissues. In some implementations, the energy window may be activated prior to and/or during dissection of the tissue such that the tissue is separated while tissue is modified within the target region.
Abstract:
Methods and systems for tissue dissection and modification are disclosed herein. A method for tissue dissection and modification may comprise inserting a tissue dissecting and modifying wand (TDM) through an incision in a patient's body. The TDM may comprise a tip having a plurality of protrusions with lysing segments positioned between the protrusions to dissect and/or modify tissue. The TDM may also comprise an energy window positioned on top of the TDM that is configured to deliver energy to modify tissues. After separating tissue using the lysing segment(s) to define a target region, the energy window may be activated and moved around within the target region to modify tissues. In some implementations, the energy window may be activated prior to and/or during dissection of the tissue such that the tissue is separated while tissue is modified within the target region.
Abstract:
An optical coherence tomography probe and laser combination device configured for real-time z-directional guidance of the incisional depth of a surgical procedure. It can be used alone or placed within the working channel of an endoscope. The device includes an OCT single mode fiber, and a laser fiber or laser hollow waveguide or electrical surgical wire positioned adjacent to the OCT single mode fiber. The single mode fiber is configured to move laterally when activated by an actuator to scan light data reflected from a sample that is positioned in front of a distal end of the device. The light data can be processed to generate a B-scan image. The device can collect data in real-time during lasing, or immediately prior to and following the cutting. The surgical tool, when coupled to a processor, can deactivate when the B-scan image identifies that the incision is within a predefined tolerance.
Abstract:
A steerable laser probe may include a handle, an actuation structure having an actuation structure distal end and an actuation structure proximal end, a flexible housing tube, and an optic fiber disposed within an inner bore of the handle and the flexible housing tube. An extension of the actuation structure distal end relative to the actuation structure proximal end may be configured to gradually curve the flexible housing tube and the optic fiber. A retraction of the actuation structure distal end relative to the actuation structure proximal end may be configured to gradually straighten the flexible housing tube and the optic fiber.
Abstract:
In general, in one aspect, the disclosure features a system that includes a flexible waveguide having a hollow core extending along a waveguide axis and a region surrounding the core, the region being configured to guide radiation from the CO2 laser along the waveguide axis from an input end to an output end of the waveguide. The system also includes a handpiece attached to the waveguide, wherein the handpiece allows an operator to control the orientation of the output end to direct the radiation to a target location of a patient and the handpiece includes a tip extending past the output end that provides a minimum standoff distance between the output end and the target location.
Abstract:
Methods and systems for resecting and debulking prostatic tissue to utilize a shaft carrying an energy source. The shaft is anchored by a balloon or other structure expanded in the bladder, and the energy source is capable of directing ablative energy radially outwardly from the urethra, where the energy source will be moved in order to remove a pre-defined volume of prostatic tissue.