Target holders, multiple incidence angle, and multizone heating for BNNT synthesis

    公开(公告)号:US09745192B2

    公开(公告)日:2017-08-29

    申请号:US15053200

    申请日:2016-02-25

    申请人: BNNT, LLC

    IPC分类号: C01B21/064

    摘要: In the synthesis of boron nitride nanotubes (BNNTs) via high temperature, high pressure methods, a boron feedstock may be elevated above its melting point in a nitrogen environment at an elevated pressure. Methods and apparatus for supporting the boron feedstock and subsequent boron melt are described that enhance BNNT synthesis. A target holder having a boron nitride interface layer thermally insulates the target holder from the boron melt. Using one or more lasers as a heat source, mirrors may be positioned to reflect and control the distribution of heat in the chamber. The flow of nitrogen gas in the chamber may be heated and controlled through heating elements and flow control baffles to enhance BNNT formation. Cooling systems and baffle elements may provide additional control of the BNNT production process.

    SUBMICRON-SIZED PARTICLES INCLUDING ALUMINUM
    115.
    发明申请
    SUBMICRON-SIZED PARTICLES INCLUDING ALUMINUM 审中-公开
    包括铝的亚尺寸颗粒

    公开(公告)号:US20160376158A1

    公开(公告)日:2016-12-29

    申请号:US15039824

    申请日:2014-11-28

    申请人: NANOMAKERS

    摘要: A method for producing particles, includes the following steps: introducing into a reaction chamber at least one reaction flow including a first chemical element (typically silicon) and propagating in a flow direction; projecting a ray beam through the reaction chamber, intersecting each reaction flow in an reaction flow interaction area, in order to form, in each reaction flow, the cores of particles including the first chemical element, and introducing, in the reaction chamber, a second chemical element, interacting with each reaction flow in order to cover the cores of particles with a layer including the second chemical element. Each reaction flow is preferably free of an agent oxidizing the first chemical element.

    摘要翻译: 一种生产颗粒的方法,包括以下步骤:将包含第一化学元素(通常为硅)并沿流动方向传播的至少一个反应流引入反应室; 将射线束投射通过反应室,在反应流相互作用区域中与每个反应流相交,以在每个反应流中形成包括第一化学元素的颗粒核,并在反应室中引入第二个 化学元素,与每个反应流相互作用以用包括第二化学元素的层覆盖颗粒的芯。 每个反应流优选不含氧化第一化学元素的试剂。

    Methods for the additive manufacturing of semiconductor and crystal materials
    116.
    发明授权
    Methods for the additive manufacturing of semiconductor and crystal materials 有权
    半导体和晶体材料的添加剂制造方法

    公开(公告)号:US09499406B1

    公开(公告)日:2016-11-22

    申请号:US14752048

    申请日:2015-06-26

    摘要: A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

    摘要翻译: 一种用于无机结晶材料的添加制造的方法,包括:物理组合用于形成用作半导体,闪烁体,激光晶体和滤光器中的一种或多种的无机结晶化合物的多种起始材料; 使用具有预定能量特征的定向热源加热或熔化组合原料的连续区域,从而有助于组合起始材料的反应; 并且允许组合的原料的每个区域以受控的方式冷却,使得得到所需的无机结晶化合物。 该方法还包括在使用定向热源加热或熔化组合起始材料的连续区域之前,加热组合的起始材料以促进组合起始材料的初始反应。 该方法还包括在连续位置之间平移组合起始材料和/或定向热源。 该方法还包括控制无机结晶化合物的机械,电,光子和/或光学性质。

    METHOD OF LASER TREATING A ZIRCONIA SURFACE
    117.
    发明申请
    METHOD OF LASER TREATING A ZIRCONIA SURFACE 审中-公开
    激光处理ZIRCONIA表面的方法

    公开(公告)号:US20160280560A1

    公开(公告)日:2016-09-29

    申请号:US15076597

    申请日:2016-03-21

    IPC分类号: C01G25/02

    摘要: A method of laser treating a zirconia surface can include surface texturing zirconia using a combination of ablation and melting. The method includes forming a carbon film on the zirconia surface and laser treating the carbon-coated zirconia surface. The carbon film can include titanium carbide (TiC) and boron carbide (B4C), for example. The carbon film can include titanium carbide (TiC) and boron carbide (B4C) in equal proportions. The carbon-coated surface can then be scanned with a nitrogen gas-assisted CO2 laser beam to form a laser-treated surface. The laser-treated surface can include ZrN compounds. The present method can enhance the surface properties of zirconia and improve the structural integrity of zirconia.

    摘要翻译: 激光处理氧化锆表面的方法可以包括使用消融和熔融的组合的表面纹理氧化锆。 该方法包括在氧化锆表面上形成碳膜并对碳涂覆的氧化锆表面进行激光处理。 碳膜可以包括例如碳化钛(TiC)和碳化硼(B4C)。 碳膜可以包括相等比例的碳化钛(TiC)和碳化硼(B4C)。 然后可以用氮气辅助的CO 2激光束扫描碳涂覆的表面,以形成激光处理的表面。 激光处理表面可以包括ZrN化合物。 本发明方法可以提高氧化锆的表面性能,提高氧化锆的结构完整性。

    Process and device for separating isotopes from a gas flow
    118.
    发明授权
    Process and device for separating isotopes from a gas flow 有权
    用于从气流中分离同位素的方法和装置

    公开(公告)号:US09421497B2

    公开(公告)日:2016-08-23

    申请号:US14123499

    申请日:2012-05-31

    摘要: A method for the isotopic separation of at least two different isotopes of a body in gaseous form by: (a) converting into the form of a gas (SF6, UF6 or MoF6) the body of interest containing the sought isotope; (b) creating a flow of said gas at supersonic speed, of the laminar or slightly turbulent type; (c) exciting the molecules by laser; (d) inhibiting, by means of a laser, the nucleation of one of the isotopologs, thus forming less massive aggregates of said isotopolog than the aggregates formed by the molecules of the other isotopolog; (e) ionizing the molecules and aggregates of said gas; (f) submitting the ionized molecules and aggregates of molecules to an electromagnetic field to make the ionized molecules and aggregates of one of the isotopologs migrate towards the outside of the flow; and (g) retrieving the part of the gas flow with the highest concentration in the sought isotope.

    摘要翻译: 一种用于通过以下方式对气体形式的身体至少两种不同同位素同位素分离的方法:(a)将含有所寻求的同位素的感兴趣体转化为气体(SF6,UF6或MoF6)的形式; (b)以超音速产生层流或微湍流型气体的流动; (c)通过激光激发分子; (d)通过激光来抑制其中一种同位素的成核,从而与由另一种同位素分子形成的聚集体形成较少的所述同位素聚集体; (e)电离所述气体的分子和聚集体; (f)将离子化的分子和聚集的分子提交到电磁场以使离子化的分子和其中一个同位素的聚集体向流动的外部迁移; 和(g)在所寻求的同位素中回收具有最高浓度的气流的一部分。

    Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus
    120.
    发明授权
    Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus 有权
    细颗粒分散液的制造方法和微粒分散液的制造装置

    公开(公告)号:US09168504B2

    公开(公告)日:2015-10-27

    申请号:US13583361

    申请日:2011-03-10

    摘要: A microparticle dispersion liquid manufacturing apparatus 10 includes a controller 11, a light source 12, an irradiation optical system 13, and a container 14. A solid object 1 is contained in and a solvent 2 is injected into an interior of the container 14 to enable attainment of a state where the solid object 1 is in contact with the solvent 2. The light source 12 repeatedly outputs pulsed light. By repeatedly irradiating the solvent 2 with the pulsed light from the light source 12, expansion and contraction of the solvent 2 is made to occur repeatedly at the irradiated portion, thereby generating a pressure wave in the solvent 2, and the pressure wave is made to act on the solid object 1 to finely pulverize the solid object 1 and thereby manufacture a microparticle dispersion liquid in which microparticles are dispersed in the solvent. A microparticle dispersion liquid manufacturing method and manufacturing apparatus are thereby realized by which both suppression of impurity formation and an increase in efficiency of microparticle formation can be achieved readily.

    摘要翻译: 微粒分散液制造装置10包括控制器11,光源12,照射光学系统13和容器14.固体物体1被容纳在溶剂2中并注入到容器14的内部,以使得能够 实现固体1与溶剂2接触的状态。光源12重复输出脉冲光。 通过用来自光源12的脉冲光反复照射溶剂2,使溶剂2的膨胀和收缩在照射部分重复出现,从而在溶剂2中产生压力波,并使压力波变为 作用在固体物体1上以细粉碎固体物体1,从而制造其中微粒分散在溶剂中的微粒分散液。 由此,可以容易地实现微粒分散液的制造方法及制造装置,能够容易地实现抑制杂质形成和微粒形成效率的提高。