Abstract:
In a method and apparatus for detecting the position of a coordinate probe relative to a digitizing tablet, a sensing coil grid provided on a working region of the tablet includes a plurality of sensing coils, each of which is U-shaped and has a front section and a grounded rear section. The coils are arranged in parallel along an axis of the working region in an overlapping manner with the front sections of consecutive ones of the coils being arranged in succession, and with the rear sections of the coils also being arranged in succession. During the sequential scanning of the coils in order to detect the electric currents induced therein and to generate a grid signal when the coordinate probe is disposed on the working region, a phase selection circuit inverts one of front and rear half-cycles of the grid signal, depending on whether a front scanning or rear scanning operation is being performed, and a signal processing circuit detects the presence of a predetermined transition of the inverted signal from the phase selection circuit. The signal processing circuit generates a count output corresponding to time elapsed before the predetermined transition is detected, and the count output is converted by a processor into a coordinate of the coordinate probe along the axis of the working region of the tablet.
Abstract:
A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a deep source/drain region adjacent the gate electrode; a silicide region over the deep source/drain region; and an elevated metallized source/drain region between the silicide region and the gate electrode. The elevated metallized source/drain region adjoins the silicide region.
Abstract:
Sulfur-containing chalcogenide absorbers in thin film solar cell are manufactured by sequential sputtering or co-sputtering targets, one of which contains a sulfur compound, onto a substrate and then annealing the substrate. The anneal is performed in a non-sulfur containing environment and avoids the use of hazardous hydrogen sulfide gas. A sulfurized chalcogenide is formed having a sulfur concentration gradient.
Abstract:
A thin film photovoltaic cell and method for forming the same. The thin film photovoltaic cell includes a first electrode layer formed on a substrate. An absorber layer of a first dopant-type is formed on the first electrode layer. The absorber layer has an opening extending partially into the absorber layer from a top surface of the absorber layer. The opening has side walls and a bottom surface. A buffer layer of a second dopant type is formed on the top surface of the absorber layer, the side walls of the opening and the bottom surface of the opening A second electrode layer is formed on the buffer layer.
Abstract:
A semiconductor device and a method of forming the same. The semiconductor device comprises a gate structure comprising a tunnel oxide over a substrate; a floating gate over the tunnel oxide; a dielectric over the floating gate; and a control gate over the dielectric. The semiconductor device further comprises: spacers along opposite edges of the gate structure; a first impurity region doped with a first type of dopant laterally spaced apart from a first edge of the gate structure; and a second impurity region doped with a second type of dopant, opposite from the first type, the drain being substantially under the drain spacer and substantially aligned with a second edge of the gate structure.
Abstract:
A semiconductor structure includes a semiconductor substrate, and an NMOS device at a surface of the semiconductor substrate, wherein the NMOS device comprises a Schottky source/drain extension region. The semiconductor structure further includes a PMOS device at the surface of the semiconductor substrate, wherein the PMOS device comprises a source/drain extension region comprising only non-metal materials. Schottky source/drain extension regions may be formed for both PMOS and NMOS devices, wherein the Schottky barrier height of the PMOS device is reduced by forming the PMOS device over a semiconductor layer having a low valence band.
Abstract:
An electromagnetic shielding composite includes a polymer and a carbon nanotube film structure. The carbon nanotube structure includes a number of carbon nanotubes disposed in the polymer. The number of carbon nanotubes are parallel with each other.
Abstract:
A semiconductor device comprises a semiconductor mesa overlying a dielectric layer, a gate stack formed overlying the semiconductor mesa, and an isolation spacer formed surrounding the semiconductor mesa and filling any undercut region at edges of the semiconductor mesa.
Abstract:
A method for forming a semiconductor structure includes: providing a semiconductor substrate; forming an NMOS device at a surface of the semiconductor substrate, which comprises forming a first source/drain electrode on a first source/drain region of the NMOS device, wherein the first source/drain electrode has a first barrier height; forming a PMOS device at the surface of the semiconductor substrate comprising forming a second source/drain electrode on a second source/drain region of the PMOS device, wherein the second source/drain electrode has a second barrier height, and wherein the first barrier height is different from the second barrier height; forming a first stressed film having a first intrinsic stress over the NMOS device; and forming a second stressed film having a second intrinsic stress over the PMOS device, wherein the first intrinsic stress is more tensile than the second intrinsic stress.
Abstract:
A method and system is disclosed for forming an improved isolation structure for strained channel transistors. In one example, an isolation structure is formed comprising a trench filled with a nitrogen-containing liner and a gap filler. The nitrogen-containing liner enables the isolation structure to reduce compressive strain contribution to the channel region.