Abstract:
The present disclosure relates to a method and an apparatus for transmitting a control channel in an intra-cell carrier aggregation system. The method includes establishing a connection with a base station through a Primary cell (Pcell) of a Time Division Duplex (TDD) scheme and a Secondary cell (Scell) of a Frequency Division Duplex (FDD) scheme. The method also includes receiving data through the Scell before a timing configured as an uplink sub-frame according to a TDD UpLink-DownLink (UL-DL) configuration of the Pcell. The method also includes transmitting a feedback of the received data through the Pcell in a feedback sub-frame. By the method, a feedback for a data can be effectively transferred.
Abstract:
A discovery signal transmission/reception method and an apparatus for improving energy efficiency of the system are provided. The discovery signal transmission method of a base station in a mobile communication system according to the present disclosure includes acquiring a discovery signal configuration of a neighbor cell, transmitting the discovery signal configuration to a terminal, receiving a measurement report including a result of measurement on a discovery signal of the neighbor from the terminal, the measurement being performed based on the discovery signal configuration, and determining whether to make a handover decision for the terminal based on the measurement report. The discovery signal transmission/reception method of the present disclosure is advantageous in improving energy efficiency of a mobile communication system.
Abstract:
An Interference Measurement Resource (IMR) allocation method and apparatus for allocating resources for efficient interference measurement in a downlink in a system supporting a New Carrier Type (NCT) is provided. The interference measurement configuration method of a base station transmitting subframes including, or not including, Cell-specific Reference Signals (CRS) in a wireless communication system includes determining whether a terminal supports a New Carrier Type (NCT) subframe, allocating, when the terminal supports the NCT subframe, Interference Measurement Resources (IMR) to the terminal at Resource Elements (REs) where other signals are not mapped in the subframe, transmitting information on the allocated IMR to the terminal, and transmitting the subframe including the allocated IMR to the terminal.
Abstract:
A method and apparatus for resource allocation in a multi-carrier wireless communication system enables transmission using smaller resource units and achieves efficient transmission of data channels with very low data rates, scheduling a greater number of user equipments without additional control channel overhead while maintaining compatibility with the resource allocation scheme of legacy user equipments. Thus, one cell controls a larger number of user equipments. In addition, as multiple user equipments are scheduled using a single control channel, resource efficiency is increased.
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
An apparatus and a method of measuring a reference signal for efficient downlink transmission in a mobile communication system are provided. The system includes plural base stations, each having a plurality of antennas distributed in the service area thereof based on a Distributed Antenna System (DAS). A method for a base station to notify a terminal of reference signal measurement information in a mobile communication system comprises determining whether the terminal is in a Rank Indicator/Precoding Matrix Indicator (RI/PMI) disabled mode, selecting, when the terminal is in the RI/PMI disabled mode, the reference signal to be measured by the terminal between a Cell-specific Reference Signal (CRS) and a Channel Status Information Reference Signal (CSI-RS), notifying the terminal of the reference signal measurement information with the selection result, and receiving channel information generated based on the reference signal measurement information from the terminal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Methods and apparatuses are provided for a data reception method of a terminal in a mobile communication system. Downlink control information (DCI) is received from a base station. It is determined determining whether a transport block size (TBS) of data transmitted by the base station is less than or equal to a predetermined value based on the DCI. The data is decoded, when the TBS is less than or equal to the predetermined value.
Abstract:
A downlink power control method and apparatus for improving downlink power efficiency gain in an Orthogonal Frequency Division Multiplexing (OFDM) system is provided. The downlink power control method includes transmitting a downlink data channel at a normal subframe according to first downlink power information for the normal subframe, and transmitting the downlink data channel at an Almost Blank Subframe (ABS) according to second downlink power information for the ABS, wherein the first downlink power information for the normal subframe and the second downlink power information for the ABS differ from each other. The downlink power control method and apparatus is capable of regulating inter-cell interference variation between contiguous symbols at a predetermined level in a subframe at a terminal of a neighbor cell and making it possible to schedule the UE receiving the low power data channel using the power ratio of the feedbacks from the UE.
Abstract:
A method for transmitting a physical channel in a Time Division Duplex (TDD) communication system capable of carrier aggregation is provided for supporting aggregation of carriers having different TDD configurations. The communication method of a terminal in a TDD radio communication system accomplishing broadband through carrier aggregation of primary and secondary cells, of which aggregated carriers have different TDD Uplink-Downlink (UL-DL) configurations, includes receiving Physical Downlink Shared Channel (PDSCH) through the secondary cell, and transmitting acknowledgement information corresponding to the PDSCH to a base station, where acknowledgement information is transmitted on a Physical Uplink Control CHannel (PUCCH) of the primary cell.
Abstract:
The present disclosure relates to a method and an apparatus for transmitting a control channel in an intra-cell carrier aggregation system. The method includes establishing a connection with a base station through a Primary cell (Pcell) of a Time Division Duplex (TDD) scheme and a Secondary cell (Scell) of a Frequency Division Duplex (FDD) scheme. The method also includes receiving data through the Scell before a timing configured as an uplink sub-frame according to a TDD UpLink-DownLink (UL-DL) configuration of the Pcell. The method also includes transmitting a feedback of the received data through the Pcell in a feedback sub-frame. By the method, a feedback for a data can be effectively transferred.