Stacked ferroelectric structure
    122.
    发明授权

    公开(公告)号:US11508755B2

    公开(公告)日:2022-11-22

    申请号:US17184856

    申请日:2021-02-25

    Abstract: The present disclosure relates to an integrated circuit (IC) in which a memory structure comprises a ferroelectric structure without critical-thickness limitations. The memory structure comprises a first electrode and the ferroelectric structure. The ferroelectric structure is vertically stacked with the first electrode and comprises a first ferroelectric layer, a second ferroelectric layer, and a first restoration layer. The second ferroelectric layer overlies the first ferroelectric layer, and the first restoration layer is between and borders the first and second ferroelectric layers. The first restoration layer is a different material type than that of the first and second ferroelectric layers and is configured to decouple crystalline lattices of the first and second ferroelectric layers so the first and second ferroelectric layers do not reach critical thicknesses. A critical thickness corresponds to a thickness at and above which the orthorhombic phase becomes thermodynamically unstable, such that remanent polarization is lost.

    Three-Dimensional Memory Device and Method

    公开(公告)号:US20220359270A1

    公开(公告)日:2022-11-10

    申请号:US17814626

    申请日:2022-07-25

    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming a layer stack over a substrate, the layer stack including alternating layers of a first dielectric material and a second dielectric material; forming trenches extending through the layer stack; replacing the second dielectric material with an electrically conductive material to form word lines (WLs); lining sidewalls and bottoms of the trenches with a ferroelectric material; filling the trenches with a third dielectric material; forming bit lines (BLs) and source lines (SLs) extending vertically through the third dielectric material; removing portions of the third dielectric material to form openings in the third dielectric material between the BLs and the SLs; forming a channel material along sidewalls of the openings; and filling the openings with a fourth dielectric material.

    HIGH SELECTIVITY ISOLATION STRUCTURE FOR IMPROVING EFFECTIVENESS OF 3D MEMORY FABRICATION

    公开(公告)号:US20220285395A1

    公开(公告)日:2022-09-08

    申请号:US17333300

    申请日:2021-05-28

    Abstract: In some embodiments, the present disclosure relates to a method for forming a memory device, including forming a plurality of word line stacks respectively including a plurality of word lines alternatingly stacked with a plurality of insulating layers over a semiconductor substrate, forming a data storage layer along opposing sidewalls of the word line stacks, forming a channel layer along opposing sidewalls of the data storage layer, forming an inner insulating layer between inner sidewalls of the channel layer and including a first dielectric material, performing an isolation cut process including a first etching process through the inner insulating layer and the channel layer to form an isolation opening, forming an isolation structure filling the isolation opening and including a second dielectric material, performing a second etching process through the inner insulating layer on opposing sides of the isolation structure to form source/drain openings, and forming source/drain contacts in the source/drain openings.

    THREE-DIMENSIONAL MEMORY DEVICE AND METHOD

    公开(公告)号:US20220285394A1

    公开(公告)日:2022-09-08

    申请号:US17316243

    申请日:2021-05-10

    Abstract: 3D memory array devices and methods of manufacturing are described herein. A method includes etching a first trench and a second trench in a multilayer stack, the multilayer stack including alternating dielectric layers and sacrificial layers. The method further includes forming a word line by replacing a sacrificial layer with a conductive material. Once the word line has been formed, a first transistor is formed in the first trench, the first transistor including a first channel isolation structure. A cut channel plug is formed in the second trench, a centerline of the cut channel plug being aligned with a centerline of the channel isolation structure. The method further includes forming a second transistor in the second trench adjacent the cut channel plug, the word line being electrically coupled to the first transistor and the second transistor.

    THREE-DIMENSIONAL MEMORY DEVICE AND METHOD

    公开(公告)号:US20210407848A1

    公开(公告)日:2021-12-30

    申请号:US16951595

    申请日:2020-11-18

    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming a layer stack over a substrate, the layer stack including alternating layers of a first dielectric material and a second dielectric material; forming trenches extending through the layer stack; replacing the second dielectric material with an electrically conductive material to form word lines (WLs); lining sidewalls and bottoms of the trenches with a ferroelectric material; filling the trenches with a third dielectric material; forming bit lines (BLs) and source lines (SLs) extending vertically through the third dielectric material; removing portions of the third dielectric material to form openings in the third dielectric material between the BLs and the SLs; forming a channel material along sidewalls of the openings; and filling the openings with a fourth dielectric material.

    Semiconductor device with air-spacer

    公开(公告)号:US11201228B2

    公开(公告)日:2021-12-14

    申请号:US16721335

    申请日:2019-12-19

    Abstract: A method includes providing a structure having a substrate, a gate structure over the substrate, a sacrificial spacer over a sidewall of the gate structure, a source/drain feature over the substrate and adjacent to the gate structure; forming a dielectric layer over the gate structure, the sacrificial spacer, and the source/drain feature; with the dielectric layer over the gate structure, the sacrificial spacer, and the source/drain feature, forming a contact extending through the dielectric layer to the source/drain feature; removing the dielectric layer to expose the sacrificial spacer; etching the sacrificial spacer to form a trench; and depositing an inter-layer dielectric (ILD) layer, wherein the ILD layer caps the trench, thereby defining an air gap inside the trench.

    NON-VOLATILE MEMORY WITH DUAL GATED CONTROL

    公开(公告)号:US20210375867A1

    公开(公告)日:2021-12-02

    申请号:US17116024

    申请日:2020-12-09

    Abstract: A memory device includes a plurality of memory cells. A first memory cell of the plurality of memory cells includes a first write transistor includes a first write gate, a first write source, and a first write drain. A first read transistor includes first read gate, a first read source, a first read drain, and a first body region separating the first read source from the first read drain. The first read source is coupled to the first write source. A first capacitor has a first upper capacitor plate coupled to the first write drain and a first lower capacitor plate coupled to the first body region of the first read transistor.

Patent Agency Ranking