Abstract:
The instant invention is directed to a process for the production of flame resistant foams by the impregnation of polyurethane foams with a dispersion consisting substantially of an aluminum hydroxide, a polyurethane latex, an aluminosilicate and surface active substances which results in foams having very desirable mechanical properties as well as excellent flame resistant properties.
Abstract:
THE COMPRESSION RESISTANCE OF OPEN CELL FOAM RUBBER IS IMPROVED BY TREATING THE FINISHED FOAM RUBBER WITH AN AQUEOUS METAL-FREE SOLUTION OF ACTIVE SILICA, WHOSE PARTICLE SIZE DOES NOT EXCEED 5 MU.
Abstract:
A reinforcing sheet including one or more layers of a reinforcing material, and a thermosetting adhesive associated with the reinforcing material, wherein the thermosetting adhesive includes a curing agent, and an epoxy-modified dimerized fatty acid combined with an epoxy terminated polyurethane interpenetrating network.
Abstract:
A method of manufacturing a flexible intrinsically antimicrobial absorbent porosic composite controlling for an effective pore size using removable pore-forming substances and physically incorporated, non-leaching antimicrobials. A flexible intrinsically antimicrobial absorbent porosic composite controlled for an effective pore size composited physically incorporated, high-surface area, non-leaching antimicrobials, optionally in which the physically incorporated non-leaching antimicrobial exposes nanopillars on its surface to enhance antimicrobial activity. A kit that enhances the effectiveness of the intrinsically antimicrobial absorbent porosic composite by storing the composite within an antimicrobial container.
Abstract:
The invention relates to insulating composite materials comprising an inorganic aerogel and a melamine foam. The invention also relates to the product method of said materials, and to the use of same.
Abstract:
A fireproof material incorporating aerogel with an organic foam material and a method for making the same are provided. The method is carried out as follows: A. a mixed solution of a precursor and an organic solvent is added with an acid catalyst and becomes an anhydrous aerogel solution through hydrolysis; B. the anhydrous aerogel solution is added with an aqueous alkali catalyst solution and forms an aerogel solution through condensation; C. an organic foam material is impregnated with the aerogel solution such that aerogel is generated by gelation and is incorporated with the organic foam material, forming a three-dimensional reticular structure; and D. the organic foam material incorporated with the aerogel is dried and then shaped to produce a fireproof material. The fireproof material is highly proof against fire and can pass the limiting oxygen index test.
Abstract:
Foam beads based on thermoplastic elastomers and having a coating comprising at least one electrically conductive substance, processes for producing same by coating the foam beads with an emulsion of a conductive substance in a plasticizer, and also processes for producing bead foams by joining the foam beads together thermally via high-frequency electromagnetic radiation.
Abstract:
The present application includes a foam product having a foam member with one or more cavities below a surface of the foam member. A dry fill material is located within the one or more cavities to the level of the surface of the foam member. A coating material is applied to the combined foam member and dry fill material. The coating material is permitted to pass around the dry fill material and fill the one or more cavities. The coating material infusing to the foam member within throughout the one or more cavities.
Abstract:
A nanoporous material is disclosed having a plurality of lamellae. Through each lamella is an array of penetrating pores. Adjacent lamellae are spaced apart by an intervening spacing layer. The spacing layer comprises an array of spacing elements integrally formed with and extending between the adjacent lamellae. The spacing layer has interconnected porosity extending within the spacing layer. Such a nanoporous material can be manufactured using block copolymer materials. First, a morphology is formed comprising a three dimensional array of isolated islands in a continuous matrix. The islands are formed of at least one island component of the block copolymer and the matrix is formed of at least one matrix component of the block copolymer. Next, channels are formed in the matrix between at least some of the islands. The island component is then selectively removed to leave the matrix with an array of interconnected pores.
Abstract:
A fire resistant and water resistant expansion joint system comprises a compressed lamination of fire retardant infused open celled foam, one coat of an elastomeric waterproofing or water resistant material on the lamination, and another coat of an intumescent material on an opposing surface of the lamination, thereby providing fire resistance in one direction and water resistance in the opposite direction. The intumescent material may be further coated with a similar elastomeric material, thereby providing fire resistance in one direction and water resistance in both directions. In the alternative, the compressed lamination may comprise first and second opposing layers of intumescent material thereon each having a respective layer of elastomeric material to provide both water resistance and fire resistance in both directions.