Abstract:
Incinerator dryer grates with temperature control provided by two-phase steam. Very wet bulk refuse entering an incinerator sits on a grate before falling onto a hearth floor below. This drives off volatile hydrocarbons and allows drying. The grate may also provide combustion air. The drying process causes the moisture content of the refuse to fall below 50 percent where combustion may occur. Two-phase steam passes through separate channels in the grate to control its temperature. The oxygen-containing gas emanating from the grate into the combustion chamber may contain gaseous products of combustion, or flue gas, with or without air to make use of the former's heat and moisture content. When the flue gas contains chlorine, its temperature should, through the addition of cool air, fall within the range of 400° to 750° F. To avoid chlorine corrosion, blowers propelling the flue gas must either remain out of the gas stream entirely or should only contact the flue gas after cooled to this temperature range. For particulate or shredded refuse, a second grate staggered below the first achieves sufficient dwell time for the material to dry and lose its volatile hydrocarbons. A loader enters the incinerator to push the refuse onto the grate and limit the refuse thickness so that the grate's gas can penetrate it.
Abstract:
A burner assembly cofires a primary solid fuel and a secondary solid fuel in a combustion zone of a boiler. The burner assembly includes a fuel injector that mixes the primary solid fuel and the secondary solid fuel prior to injection into the combustion zone of the boiler. The primary solid fuel may be pulverized coal, pulverized petroleum coke, or the like, while the secondary solid fuel may be a biomass fuel or refuse-derived fuel.
Abstract:
An incinerator includes a furnace, a heat-insulating shield, an air conduit, an air blower, and a dryer. The heat-insulating shield has a top wall, a vertically extending peripheral wall that extends downwardly from the top wall and that surrounds and that is spaced apart from the furnace by a gap, and an open bottom end. The peripheral wall of the heat-insulating shield has an air outlet that is disposed adjacent to the top wall and that is in fluid communication with the gap. Atmospheric air is introduced via the open bottom end through the gap and the air conduit and into the dryer.
Abstract:
An apparatus for treating waste material that comprises four major cooperating subsystems, namely a pyrolytic converter, a two-stage thermal oxidizer, a steam generator and a steam turbine driven by steam generated by the steam generator. In operation, the pyrolytic converter is uniquely heated without any flame impinging on the reactor component and the waste material to be pyrolyzed is transported through the reaction chamber of the pyrolytic converter by a pair of longitudinally extending, side-by-side material transfer mechanisms. Each of the transfer mechanisms includes a first screw conveyor section made up of a plurality of helical flights for conveying the heavier waste and a second paddle conveyor section interconnected with the first section for conveying the partially pyrolyzed waste, the second section comprising a plurality of paddle flights. Once operating, the apparatus is substantially self-sustaining and requires a minimum use of outside energy sources for pyrolyzing the waste materials.
Abstract:
A system for disposing of municipal solid waste 10) provides commercially-available equipment that is modified to initially remove identifiable unwanted components from the waste (12), and then chop the waste into small pieces (16) of a size suitable for handling and combustion. The moisture content of the waste is reduced in a closed system (20) by passing dry air through the waste in a confined space (30) to absorb moisture and produce moist air, which is then dehumidified via refrigeration equipment (34). The dehumidified air is recycled (30, 40) through the waste repeatedly through the closed system (20) until the water content has reached the predetermined amount. The waste is stored in a bunker (41) for later burning, or is immediately burned in a furnace (24) to produce heat that is used to produce steam (50), which drives a generator (26) to produce electricity (52) that is partly used to power the process and partly sold commercially.
Abstract:
Processes and systems are provided that include introducing ammonia liberated from organic waste to a coal burner in a coal burning power plant, preferably for NOx removal at the power plant. The ammonia is preferably either ammonia liberated upon drying a mixture of organic waste and coal combustion by-products or ammonia liberated when organic waste is mixed with coal combustion by-products and one or more alkaline additives. Also provided are processes and systems of fueling a coal burner of a power plant with coal and either a dried mixture of organic waste and coal combustion by-products, or a mixture of organic waste, coal combustion by-products and one or more alkaline additives. The present invention is further directed to mixtures of either organic waste and coal combustion by-products, or mixtures of organic waste, coal combustion by-products and alkaline additives made by the processes of the present invention.
Abstract:
This Document is a Continuation in Part of U.S. patent application Ser. No. 09/093,029 filed on Jun. 8, 1998, said invention comprising an apparatus for evaporating water in a mixture of water and solids derived from the organic output of a waste water treatment plant. A low cost source of gaseous heat (as the exhaust from a gas turbine driver in combination with/or alternatively from a stand alone combustor) is used for evaporating said water and safe conditioning said evaporated water vapor after being combined with a portion of the exhaust from said gaseous heat source. The solids portion of said organic output from said waste water treatment plant is segregated and safe conditioned separately. This continuation in part filing supplements said basic reference patent filing by defining a specific heat exchange surface configuration for heat exchanger 17 which minimizes radiation heat losses to atmosphere. Also, incineration temperature has been reduced to minimize the cost of heat transfer surface relative to tube materials employed and high temperature volumetric requirements. Illustrative temperature differentials between heat transfer circuits have also been increased.
Abstract:
A method for processing an air stream using a thermal oxidizer, by pre-heating the air stream, without the use of auxiliary heat, and substantially eliminating the condensation of organic or inorganic compounds within the air stream to be treated. Alternatively, or in combination, the system used for this pre-heat method can also be used to accommodate intermittent higher volumes of organic or inorganic compounds without the need for additional bypass hardware or any unnecessary waste of energy or capital costs.
Abstract:
A device for combustion of moist fuel includes a combustion chamber with a moving fire grate disposed at a bottom portion thereof and a drum dryer located within the combustion chamber above the fire grate. The dryer drum rotates and includes therein an involuted drum in communication with a feeding apparatus external to the combustion chamber. The feeding apparatus transports fuel from a bin to the involuted drum. As the drum dryer rotates the fuel therein moves toward an end thereof and is dried by the heat of the combustion chamber. From an end of the drum dryer, the dried fuel falls onto the fire grate and is burned.
Abstract:
There are provided a pretreatment facility (1) and a incineration/melting facility (2). In the incineration/melting facility, an incineration chamber (3) and a melting chamber (5) are integrally formed through a partition wall (7) so that incineration residue can be continuously transferred. Fine crushed material finely crushed by the pretreatment facility (1) is supplied as fuel to a burner (4). This enables it to obtain melting heat source from waste, and to efficiently treat the waste at a low cost by directly superheating and melting non-cooled incineration residue from the incineration chamber (3).