Abstract:
At least one method, apparatus, and system for determining a distance between layers of a semiconductor device and, if desired, modifying a semiconductor device manufacturing process in view of the determined distance. The system comprises and the methods make use of a test circuit comprising a resistor, at least one of an inductor and a capacitor, a first terminal and a second terminal each configured to electrically connect to a first layer circuit and a second layer circuit of a semiconductor device.
Abstract:
Systems and methods for determining the instantaneous force generated by a motor. In one embodiment, AC power (e.g., three-phase power) is provided to a linear motor of an ESP. An instantaneous current for each of the phases is measured at a particular point in time. These instantaneous current vectors are used to determine an instantaneous force by, for example, computing a root-mean-square of the instantaneous current vectors and multiplying the root-mean-square by a power factor. The instantaneous force computation may be performed successively for multiple, distinct points in time, and these computed force values may be used to form a graphical representation of the force generated by the linear motor over the stroke of the motor. The computed force values may also be used as the basis for controlling the motor.
Abstract:
An apparatus, and an associated method, forms a user interface permitting input of input instructions to an electronic device. Input commands are evidence by tactile input forces applied to a force receiving surface. Force sensing elements are positioned to sense indications of the tactile input force. The force sensing element is caused to exhibit a selected input parameter value through application of a selected force thereto by application of a tightening torque to a fastener positioned in proximity to the force sensing element.
Abstract:
In one aspect, wireless strain gauges are described herein. In some embodiments, a wireless strain gauge comprises a radio frequency identification (RFID) tag and a nano-composite backplane coupled to the RFID tag, wherein the resonant frequency of the RFID tag antenna demonstrates an exponential dependence or substantially exponential dependence on the strain sensed by the strain gauge.
Abstract:
The optical force sensor includes a base member, a displaceable member, an elastic member disposed between the base and displaceable members and a displacement detector optically detecting a displacement of the displaceable member caused by an external force. The displacement detector causes first and second light fluxes to form interference fringes on a first light-receiving element. The first light flux from a light source is internally reflected at a gap-side surface of a light-transmissive member. The second light flux from the light source is transmitted through the light-transmissive member, reflected by a reflective surface provided to the displaceable member and again transmitted through the light-transmissive member. The displacement detector outputs, from the first light-receiving element, a signal corresponding to a variation in intensity distribution of the interference fringes.
Abstract:
A flexible organic thin-film transistor according to an exemplary embodiment of the present disclosure includes an active layer formed on a flexible substrate from a material having a smaller grain size than 100 nanometers (nm) and arrangement in a herringbone structure.Also, a sensor according to another exemplary embodiment of the present disclosure includes at least two flexible organic thin-film transistors coupled to be of an inverter type.
Abstract:
A system includes a vibrational energy harvesting device adapted to receive vibrational energy and convert the vibrational energy to electrical energy. The system also includes a computing device having an electrical connection to the vibrational energy harvesting device. The system also includes a sensor having an electrical connection and a data connection to the computing device. The system also includes a transmitter having an electrical connection and a data connection to the computing device. When the computing device receives the electrical energy from the vibrational energy harvesting device, the computing device is configured to receive sensor data from the sensor via the data connection between the computing device and the sensor and operate the transmitter to wirelessly transmit the sensor data.
Abstract:
The present invention relates to a method of determining both pressures and temperatures in a high temperature environment. The present invention also relates to a method of determining temperatures about a pressure-sensing element using a bi-functional heater. In addition, the present invention preferably relates to a pressure sensor with the pressure-sensing element and a heating element both integrated into the sensor's packaging, preferably onto the diaphragm of the pressure sensor, and particularly to such a pressure sensor capable of operating at high or elevated temperatures, and even more particularly to such a pressure sensor wherein the heating element is capable of both heating, at least in part, the pressure-sensing element and monitoring the temperature of the application area. Preferably, the pressure-sensing element is formed from shape memory alloy (SMA) materials that can be used at high or elevated temperatures as a pressure sensor with high sensitivity.
Abstract:
The optical force sensor includes a base member, a displaceable member, an elastic member disposed between the base and displaceable members and a displacement detector optically detecting a displacement of the displaceable member caused by an external force. The displacement detector causes first and second light fluxes to form interference fringes on a first light-receiving element. The first light flux from a light source is internally reflected at a gap-side surface of a light-transmissive member. The second light flux from the light source is transmitted through the light-transmissive member, reflected by a reflective surface provided to the displaceable member and again transmitted through the light-transmissive member. The displacement detector outputs, from the first light-receiving element, a signal corresponding to a variation in intensity distribution of the interference fringes.
Abstract:
A protector with a sensor is installed on a sliding door for detecting an object by touch between two core wires in a hollow part. In a terminal part of the protector with the sensor, the core wires drawn out are connected with leads joined with a control unit. A primary seal is formed by means of injection molding for covering wire connection parts and another end side of an insert while also covering a skin of a wire harness which ties and coats the two leads. A secondary seal is formed by means of the injection molding for coating a part formed with the primary seal and for forming an external shape of a product.