Abstract:
A heat exchanger for a vehicle includes a heat exchange unit in which a plurality of plates are layered to alternately form a first flow channel and a second flow channel therein and heat exchange unit having one surface fixedly mounted in an expansion valve. First and second inflow holes are formed separately at both surfaces of the heat exchange unit and connected to the first flow channel and the second flow channel, respectively. First and second exhaust holes are formed separately in a diagonal direction of the first and second inflow holes at both surfaces of the heat exchange unit and connected to the first flow channel and the second flow channel, respectively. A noise reducer is integrally connected to the heat exchange unit at another surface of the heat exchange unit and reduces noise and vibration occurring when an operation fluid that is injected through the second inflow hole moves.
Abstract:
A door structure for an air conditioner of a vehicle includes an indoor/outdoor air door having a dome shape. An outdoor air door has a plate shape and adjusts the amount of outdoor air introduced into the vehicle. First and second counter-flow preventing ribs are disposed vertically between the dome shaped indoor/outdoor air door and the plate shaped outdoor air door. The first counter-flow preventing rib is mounted to a first hinge which is connected to one end of the plate shaped outdoor air door. The second counter-flow preventing rib is mounted to be close to another end of the plate shaped outdoor air door. An air conditioning filter is disposed below the dome shaped indoor/outdoor air door, the plate shaped outdoor air door, and the first and second counter-flow preventing ribs and filters the introduced indoor air or outdoor air.
Abstract:
A dual type air conditioning control system of a vehicle has a front-seat air conditioner for air-conditioning of a front-seat space and a rear-seat air conditioner for air-conditioning of a rear-seat space of the vehicle. The system includes a front-seat controller configured to control an operation and an output of the front-seat air conditioner, and to calculate a control target value for controlling an output of the rear-seat conditioner. The rear-seat controller is configured to receive the calculated control target value transmitted from the front-seat controller and to control the output of the rear-seat air conditioner based on the transmitted control target value.
Abstract:
A tank for a heat exchanger comprises a casing including a substantially planar header opening formed therein and a foot disposed around a perimeter of the header opening. The foot forms an outwardly extending flange from which a pair of oppositely arranged walls extend, the oppositely arranged walls forming an arcuate shape including a spine extending along an apex of the arcuate shape. The oppositely arranged walls each have a corrugated profile adjacent the foot due to the presence of outwardly projecting ribs formed in the oppositely arranged walls. Each of the ribs extend lengthwise from the foot toward the spine, wherein a distal end of each of the ribs is formed adjacent a neutral stress portion of the casing which undergoes a minimal stress when the casing is subjected to an internal pressure from a fluid flowing therethrough.
Abstract:
The present invention relates to a vane rotary compressor wherein the volume of a compression room is reduced and a fluid is compressed when a rotor rotates. According to one embodiment of the present invention, the present invention provides the vane rotary compressor for maximizing the rotational moment of a vane by extending a weight part at a front end part of the curved blade type vane so as to remove the hitting noise due to the delay of the rotational operation of the vane when the rotor is rotated, and increasing the performance by reducing the internal leak.
Abstract:
The invention relates to an air deflector device for an air conditioning system in a motor vehicle. The air deflector device has at least one closure element and at least one air mixing element. The closure element and the air mixing element have a common rotational axis in the air deflector device. The closure element extends in the direction of the rotational axis across the entire depth of a cross-section of a flow passage to be closed off in the air conditioning system, and comprises retaining elements.The air mixing element, which extends in the direction of the rotational axis, is embodied according to the invention with cross-flow openings, so that a cross-section of at least one flow passage of the air conditioning system can be adjusted based on the position of the air deflector device.
Abstract:
A charge air system of a motor vehicle having a charger disposed in a charge air circuit and an air-cooled charge air cooler in fluid communication with the charger. The charge air system further includes a pre-cooler is in fluid communication with the air-cooled charge air cooler and an engine coolant circuit in heat exchange communication with the pre-cooler. The engine coolant circuit configured to deliver a flow of coolant through an engine of the motor vehicle.
Abstract:
An air conditioning system controller for motor vehicles includes a mood lamp, an illumination device configured to illuminate the mood lamp with a variable illumination color, and a control unit configured to control the illumination device to change the illumination color of the illumination device depending on a cooling/heating load.
Abstract:
A control method of an air conditioner system for an electric vehicle may include circulating the refrigerant by sensing actuation of the air conditioner system while driving the electric vehicle in a state where a start of the electric vehicle is turned on, circulating and cooling the cooling water through actuation of a water pump and a cooling fan in a cooling module that includes an engine radiator, the intercooler radiator, the water-cooled condenser, and the air-cooled condenser, and controlling actuation speeds of the water pump and the cooling fan based on whether the electric vehicle stops after suddenly accelerating in a state where the air conditioner system is actuated or stops in a state where the air conditioner system is turned off after travelling, and/or based on whether an air conditioner pressure and a cooling water temperature are within predetermined set values.