Abstract:
A reduction in the weight of a display device with a touch sensor is achieved while a decrease in the sensitivity thereof is suppressed. The display device includes, between a pair of substrates, a touch sensor, a color filter, and a display portion provided with a display element. A stress relief layer whose product of the dielectric constant and specific gravity is smaller than that of the substrate provided with the touch sensor is provided, whereby parasitic capacitance between an electrode and a wiring included in the touch sensor and an electrode and a wiring included in the display portion can be reduced.
Abstract:
A light-emitting element unit which can improve color purity of light emitted from a color filter is provided. A display device with high color purity and high color reproducibility is provided. The light-emitting element unit includes a wiring board, a light-emitting element chip provided over the wiring board, a micro optical resonator provided over the wiring board and at the periphery of the light-emitting element chip, and a phosphor layer covering the light-emitting element chip and the micro optical resonator. The display device includes a display panel having a coloring layer and a backlight module having the light-emitting element unit. Examples of the display panel include: a liquid crystal panel; and a display panel including an opening portion provided over a first substrate, MEMS moving over the opening portion in the lateral direction, and a second substrate provided with a coloring layer in a portion corresponding to the opening portion.
Abstract:
To provide a liquid crystal display device which can perform image display in both modes: a reflective mode where external light is used as an illumination light source; and a transmissive mode where a backlight is used. In one pixel, a region where incident light through a liquid crystal layer is reflected to perform display (reflective region) and a region through which light from the backlight passes to perform display (transmissive region) are provided, and image display can be performed in both modes: the reflective mode where external light is used as an illumination light source; and the transmissive mode where the backlight is used as an illumination light source. In addition, two transistors connected to respective pixel electrode layers are provided in one pixel, and the two transistors are separately operated, whereby display of the reflective region and display of the transmissive region can be controlled independently.
Abstract:
To provide a novel, highly convenient or reliable display module or a novel, highly convenient or reliable method for manufacturing a display module, a display module including the following has been devised: a first base which is flexible and supports a terminal, a second base which is flexible and overlaps with the first base, a bonding layer which bonds the first base and the second base, a flexible printed circuit electrically connected to the terminal, a display element electrically connected to the terminal, and an insulating layer in contact with the first base, the second base, the bonding layer, and the flexible printed circuit. The display element is provided with a layer containing a light-emitting organic compound.
Abstract:
A display device in which a peripheral circuit portion has high operation stability is provided. The display device includes a first substrate and a second substrate. A first insulating layer is provided over a first surface of the first substrate. A second insulating layer is provided over a first surface of the second substrate. The first surface of the first substrate and the first surface of the second substrate face each other. An adhesive layer is provided between the first insulating layer and the second insulating layer. A protective film in contact with the first substrate, the first insulating layer, the adhesive layer, the second insulating layer, and the second substrate is formed in the vicinity of a peripheral portion of the first substrate and the second substrate.
Abstract:
A film-like member is supported in a flat shape by vacuum suction. A plurality of lift pins are arranged in a planar configuration and bear a film-like member placed on their upper ends. Tubular pads made of rubber for holding the film-like member by vacuum suction are attached to upper portions of the lift pins. The height of the lift pins can be adjusted by a screw fastening mechanism. The deformation of the film-like member can be corrected to a flat or concavely curved shape by suction from the pads. When the correction cannot be achieved by suction alone, the correction may be supplemented by ejection of air from a nozzle.
Abstract:
The thickness of a display device including a touch sensor is reduced. Alternatively, the thickness of a display device having high display quality is reduced. Alternatively, a method for manufacturing a display device with high mass productivity is provided. Alternatively, a display device having high reliability is provided. Stacked substrates in each of which a sufficiently thin substrate and a relatively thick support substrate are stacked are used as substrates. One surface of the thin substrate of one of the stacked substrates is provided with a layer including a touch sensor, and one surface of the thin substrate of the other stacked substrate is provided with a layer including a display element. After the two stacked substrates are attached to each other so that the touch sensor and the display element face each other, the support substrate and the thin substrate of each stacked substrate are separated from each other.
Abstract:
A display panel includes a flexible substrate, a first display region, a second display region, and a third display region. The first display region has a quadrangle outline and includes a first side and a second side forming a first corner portion of the outline. The second display region is in contact with the first side and the width of the second display region in a direction parallel to the first side coincides with the length of the first side. The third display region is in contact with the second side and the width of the third display region in a direction parallel to the second side coincides with the length of the second side. The substrate includes a notch portion corresponding a region facing the first display region with the first corner portion provided therebetween.
Abstract:
A light-emitting device can be folded in such a manner that a flexible light-emitting panel is supported by a plurality of housings which are provided spaced from each other and the light-emitting panel is bent so that surfaces of adjacent housings are in contact with each other. Furthermore, in the light-emitting device, in which part or the whole of the housings have magnetism, the two adjacent housings can be fixed to each other by a magnetic force when the light-emitting device is used in a folded state.
Abstract:
A light-emitting device includes a strip-like high flexibility region and a strip-like low flexibility region arranged alternately in a direction. The high flexibility region includes a flexible light-emitting panel. The low flexibility region includes the light-emitting panel and a support panel having a lower flexibility than that of the light-emitting panel and overlapping with the light-emitting panel. It is preferable that the light-emitting panel include an external connection electrode and that a length in the direction of a low flexibility region A that overlaps with the external connection electrode be longer than a length in the direction of a low flexibility region B that is closest to the region A.