Abstract:
There is disclosed a honeycomb structure including: a tubular honeycomb structure part having porous partition walls with which a plurality of cells are formed, and an outer peripheral wall; and a pair of electrode parts arranged on a side surface of the honeycomb structure part, an electrical resistivity of the honeycomb structure part is from 1 to 200 Ωcm, each of the pair of electrode parts is formed into a band-like shape extending in a direction in which the cells extend, in a cross section perpendicular to the extending direction of the cells, the one electrode part is disposed opposite to the other electrode part via the center of the honeycomb structure part, and a total of heat capacities of the pair of electrode parts is from 2 to 150% of a heat capacity of the whole outer peripheral wall.
Abstract:
The invention relates to a microporous and mesoporous carbon xerogel and organic precursors thereof based on a phenol-formaldehyde xerogel. A characteristic parameter common to carbon xerogels is a peak in the mesopore size distribution determined by the BJH method (Barrett-Joyner-Halenda) from nitrogen absorption measurements at 77 K in the range from 3.5 nm to 4 nm. The production process is characterized firstly by the low starting material costs (use of phenol instead of resorcinol) and secondly by very simple and cost-effective processing; convective drying without solvent exchange instead of supercritical drying or freeze drying. The carbon xerogels and their organic phenol-formaldehyde xerogel precursors have densities of corresponding to a porosity of up to 89%, and the xerogels can also have a relevant mesopore volume. The carbon xerogels obtained from the phenol-formaldehyde xerogels are also microporous.
Abstract:
[Problems] To provide a process for producing a conductor built-in ceramic which can eliminate the need to conduct metallic lead wire processing, can suppress the entry of a foreign matter, dust and the like from gaps between bases formed in dewaxing and firing and can reduce a dielectric breakdown failure, and a conductor built-in ceramic produced by the production process.[Means for Solving Problems] A process for producing a conductor built-in ceramic, comprising the step of producing a molded product (11) for an energization part using a conduction mixture, containing an electroconductive ceramic powder and a binder, the step of holding the molded product (11) for an energization part within a mold (13) and filling a mixture (15), for a base, containing an insulating ceramic powder and a binder into the mold (13) to produce an element compact (17) comprising a molded product (11), for an energization part, covered with the mixture (15) for a base, and the step of firing the element compact (17). According to the production process, the formation of gaps between the energization part and the base can be suppressed, and external inclusion of a foreign material, dust and the like in the element compact (17) in dewaxing or firing can also be suppressed.
Abstract:
A product is described, the product is in liquid state and comprises: a first electrically non-conductive susceptor; a second electrically conductive susceptor; monomer molecules; and an initiator, suitable to trigger polymerization chain reaction of the monomer molecules, when activated by the first and/or the second susceptor. Further, a method is described to treat a wellbore including a zone, the method comprising the steps of: pumping the product above into the wellbore; placing the product in the vicinity of the zone; and applying an alternating magnetic field on the product.
Abstract:
Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.
Abstract:
A honeycomb structural body is constituted with a ceramic block comprising a plurality of through-holes arranged in a longitudinal direction and separated from each other through partition walls, either end portions of which through-holes being sealed. The ceramic block constituting the honeycomb structural body is made of a composite material consisting of ceramic particles and crystalline silicon and having an excellent thermal conductivity, so that the honeycomb structural body is excellent in the thermal diffusibility but also excellent in the resistance to thermal shock because the storing of thermal stress is less and no crack is caused even if a temperature distribution is caused at a relatively low temperature or cool-heat cycle is repeated over a long period of time.
Abstract:
Compositions are provided for increasing the electrical conductivity of concrete or controlled low-strength materials (flowable fill). One composition sets to produce a concrete and includes portland cement, water, aggregate, and particulate matter including a sorbent and a contaminant absorbed, adsorbed or entrapped by the sorbent. The sorbent may be activated carbon, and the contaminant may be mercury or a compound containing mercury. Another composition is a self-compacting, cementitious flowable fill composition that includes portland cement, water, and particulate matter including a sorbent and a contaminant absorbed, adsorbed or entrapped by the sorbent. The sorbent may activated carbon, and the contaminant may be mercury or a compound containing mercury. The compositions may also include carbon fibers.
Abstract:
Ablation probes are provided for perfusing the tissue, while the tissue is ablated. The ablation probe comprises an elongated shaft and an ablative element, such as a needle electrode. The ablation probe further comprises a lumen that extends through the probe shaft, which will be used to deliver a fluid to the distal end of the probe shaft for perfusion into the surrounding tissue. The ablation probe further comprises a porous structure that is associated with the distal end of the shaft in fluid communication with the lumen. For example, the distal end of the shaft, or the entirety of the shaft, can be composed of the porous structure. Or, if the ablative element is an electrode, the electrode can be composed of the porous structure. Because the pores within the porous structure are pervasive, the fluid will freely flow out into the tissue notwithstanding that some of the pores may become clogged.
Abstract:
A conductive silicon nitride composite sintered body having an average grain size of 100 nm or less and whose relative roughness (Ra) after electric discharge machining is 0.3 μm or less can be obtained by grinding/mixing a silicon nitride powder and a metal powder together until the average particle size of the silicon nitride powder becomes 30 nm or less, and subsequently by molding and sintering. It is preferable that the crushing/mixing is continued until it is apparent that a peak of added metal in an X-ray diffraction pattern has disappeared during the crushing/mixing.
Abstract:
A treatment and an object so treated, which may be used to improve the electrical stability, energy efficiency and performance of silicon carbide heating elements is disclosed. Use is made of colloidal binders and silicides to treat silicon carbide heating elements in a manner which improves their electrical stability during use. The resultant heating element may be used to conserve energy, during its life cycle because of the use of lower power.