Abstract:
A specular array for radiometric calibration (SPARC) includes a plurality of spherical mirrors disposed upon a uniform background as at least one array of reflective points, at least two points reflecting a different intensity of directly incident sunlight. Each mirror has a radius of curvature and a diameter, the radius of curvature and the diameter providing a field of regard, the collective mirrors providing a collective minimum calibratability field of regard. Based upon the radius of curvature, the transmittance value of the sun to each mirror and from each mirror to a sensor being calibrated, the intensity of calibration light provided to the input aperture of a sensor to be calibrated within the collective minimum calibratability field of regard may be determined and used as a baseline for sensor calibration. An associated method of combined spatial and radiometric calibration is also provided.
Abstract:
A light meter for measuring photometric quantities includes a telephotometer having a photo detector to receive light energy entering the telephotometer. A light metering valve, for the purpose of providing a variable field of view, is located in the body of the telephotometer generally at the focal plane of the objective lens of the telephotometer. A controller, which includes a digital processor in communication with the photo detector will process information from the photo detector and from a range finder included in the system to output light intensity of a target light source.
Abstract:
An extended range focus sensor is provided. In various embodiments, the focus sensor may include a relay lens assembly to image a plane between an objective lens and the relay lens arrangement to a plane near an entrance pupil of a focus detector arrangement of the focus sensor. In some embodiments, the objective lens pupil is imaged onto the focus detector entrance pupil. In some embodiments, an illumination beam passes through the relay lens arrangement and is magnified on its way to be output by the objective lens, and the reflected focus detection beam passes back through the objective lens and the relay lens arrangement and is reduced prior to being input to the focus detector arrangement. In some embodiments, the focus detector arrangement may comprising a broad range focus detector combined with a high resolution Shack-Hartmann focus detector, and in others a single extended range Shack-Hartmann focus detector is used.
Abstract:
A goniophotometer includes two independent towers: a main support tower and an upright mirror tower. A swing arm is connected to the main support tower and can be rotated around a main horizontal axis. An elliptic flat rotation mirror, a first detector and a second detector are fixed to the swing arm. A test light source that is also connected to the main support tower can be rotated around a vertical axis. An upright round mirror is connected to the upright mirror tower. A far-field measurement can be achieved when a light beam from the test light source travels into the rotation mirror then is reflected to the upright mirror, and then is reflected by the upright mirror to the first detector. A near field measurement is achieved when the second detector receives a test light beam directly form the test light source.
Abstract:
A photo-detection device comprising a base plate made of an insulation material and having a plurality of through holes formed in the base plate at a substantially equal distance, a plurality of optical fibers each having one end including a light receiving section from an object to be detected inserted and fixed to the respective through holes and another end provided with a light output section, and a light detection section connected to the light output section.
Abstract:
An apparatus is provided for measuring viewing angle characteristic of luminance and positional characteristic of a radiant object under measurement, by moving a condensing device and an imaging device relative to the object. The apparatus includes a first mechanism for moving the light receiving elements of the condensing device while keeping constant the solid angle subtended by the light receiving element at the radiant area. A second mechanism is provided for moving the imaging device in association with the condensing device, while maintaining thereon the image of the radiant area. A memory is provide. A circuit is provided for calculating viewing angle dependent and position dependent characteristics. A display device is provided for displaying radiance characteristic and distribution characteristic of the object and the result of evaluation of the calculated characteristic of luminance.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient database. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient database. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
A gonioradiometric scanning apparatus and method for measuring the near and/or far field radiation pattern of radiating optical sources such as laser diodes (LD), light emitting diodes (LED), optical fibers, flat panel displays, and luminaires is described. The scanning apparatus incorporates a deflector for selecting an azimuth angle through the optical source to be measured, a rotating apparatus which collects light while scanning about the source, an optical commutator, and a detector. The rotating apparatus comprises a cylindrical hub and an optical collector using either an optical fiber or a train of reflectors, such as mirrors or retro-reflectors. The optical collector provides a means for both collecting light and for directing the beam emanating from the deflector to a place opposite the detector at which optical commutation occurs. The reflector optical train, when employed, folds the optical path and increases the effective radius of measurement, so that large radius scans can be obtained in an instrument with compact geometry. Depending on the source geometry and the effective optical path, the light collection can be either in the near field or the far field of the source radiation pattern. For the case of the far field radiation pattern, it will also be possible to measure the near field radiation patterns by imaging the source onto the light collection surface.