Abstract:
A sensitive fluid sensor for detecting fluids and particularly trace fluids. The sensor may be adjustable for detecting fluids of various absorption lines. To effect such adjustment, a tunable laser may be used. The laser may be an edge emitting diode, a VCSEL or other tunable source. The detection apparatus of the sensor may incorporate a sample cell through which a laser light may go through. The sample cell may comprise a tunable ring-down cavity. The ring-down cavity may be a ring laser cavity like that of a ring laser gyroscope. There may be a photo detector proximate to the ring down cavity connected to a processor.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
The following arrangement is adopted to achieve an X-ray spectroscope capable of simultaneously spectrally analyzing, with a single spectral scanning, X-rays emitted from a point-like X-ray source in a plurality of wavelength ranges such that X-rays in a wide wavelength range can spectrally be analyzed with a single spectral scanning. In an X-ray spectroscope in which a point-like X-ray source, a spectral crystal and a X-ray detector are disposed along a Rowland circle and in which, with the distance between the X-ray source and the spectral crystal maintained equal to the distance between the spectral crystal and the X-ray detector, this distance is continuously changed such that the wavelength of X-rays to be spectrally analyzed is continuously changed, the X-ray spectroscope is characterized in that the spectral crystal comprises a plurality of arcuate crystals for spectrally analyzing respective X-rays different in wavelength, that at least one of the arcuate crystals is located at a position apart from the reference plane including the Rowland circle and that the X-ray detector comprises at least one X-ray detector for detecting the X-rays diffracted by the arcuate crystals.
Abstract:
A photometer for measuring electromagnetic radiation absorption of a sample utilizing a source of the electromagnetic radiation. Electromagnetic radiation is conducted from the source, to a sample sensor, and is passed through the sample utilizing a sample cell. The electromagnetic radiation is then directed to a detection system which determines absorbance of electromagnetic radiation by the sample at the sample cell. The detection system includes a beam splitter which receives the electromagnetic radiation and outputs first and second beams. A first detector having a first wavelength filter and a second detector having a second wavelength filter receives the two beams from the splitters. One detector may be employed to produce a reference signal. The remaining detector or detectors produce an output signal which is a representation of a characteristic, such as absorbance of the sample. The output signals are operated on by a reference signal, and converted into a measurement absorbance.
Abstract:
The invention relates to a procedure for determining an identification of a sample of material, or its properties. Electromagnetic radiation from a radiation source (1) is reflected or transmitted through the sample. The radiation from the sample is collected and analyzed over several channels (7, 7', 7"), which modulate the radiation with a spectral transmission function which is unique for each channel. The modulated radiation is transmitted to one or several detectors (9, 9', 9") which produce output signals which are further electronically processed. The spectral range of each of the individual channels is common to all of the channels. Within the common range the channels are provided with different spectral transmission functions (7, 7',7") which are optimally chosen for a given application.
Abstract:
A solid-state detector for use in an atomic spectrometer comprises a plurality of arrays of sensing elements, or pixels, each of the arrays being positioned along and on the locations of spectral signals on a focal plane of an echelle grating spectrometer. The sensing elements are positioned along the many diffraction orders presented on a two-dimensional echelle grating focal plane so that at least one element is located at each and every resolution element regardless of global x-y coordinate positioning of the elements or with reference to each other. The result is a series of skewed lines of sensing elements, those lines being in the same shape as the series of diffraction order lines which comprise an echelle spectrum. The solid-state detector is particularly useful in an atomic spectrometer wherein an echelle grating is used to diffract incident radiation such that the various components of the radiation may be observed.
Abstract:
A method for discriminating a chemical/physical quantity comprises exposing a sensor array consisting of a plurality of sensor members exhibiting differing response ranges with respect to a chemical/physical quantity to stimulation and discriminating the cause of the stimulation from the order in which the sensor members produce lowest significant (discriminable) output levels.
Abstract:
An ellipsometer system which includes a pivotal dispersive optics positioned to receive polychromatic light from an analyzer thereof, without further focusing after reflection from a substrate system, is presented. In addition, a stationary compensator, positioned between an analyzer and the dispersive optics, which serves to reduce detector element polarization dependent sensitivity to light entering thereto after it interacts with the dispersive optics, is disclosed. The use of a light fiber to carry light from a source thereof, to a polarization state generator, is also disclosed. The method of the present invention can include application of mathematical correction factors to, for instance, substrate system characterizing PSI and DELTA values, or Fourier ALPHA and BETA coefficients.
Abstract:
A spectroanalytical system with radiation dispersing apparatus for dispersing radiation into a spectrum for concurrent application to an array of exit ports; sample excitation apparatus for exciting sample material to be analyzed to spectroemissive levels for generating a beam of radiation for dispersion by the dispersing structure; the exit port array including a corresponding array of detectors including a first detector positioned adjacent a first exit port positioned to sense first order radiation from an element of interest and a second detector positioned adjacent a second exit port to sense second order radiation from the same element of interest; and processing apparatus for responding to outputs of the first and second detectors to provide a compensated output as a function of the quantity of the element of interest in the sample material.
Abstract:
A two-dimensional colorimeter focuses light through a beam splitter onto a rotary filter so that a first light receiving element can receive light from multiple points on a sample. A rotating filter can provide multiple measurements based upon different wavelengths of light. A portion of the light from the beam splitter also contacts a spectral sensor which separates the light from a particular point into primary wavelength elements which are converted into electrical signals. Based upon these primary wavelength elements, the first signals from the light receiving element are corrected. As a result, the measurement of chromaticity of multiple points on a sample can be performed accurately using a device of simple construction.