Abstract:
A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
Abstract:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
Abstract:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
Abstract:
A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.
Abstract:
In a metal gate replacement process, strain may be selectively induced in the channels of NMOS and PMOS transistors. For example, a material having a higher coefficient of thermal expansion than the substrate may be used to form the gate electrodes of PMOS transistors. A material with a lower coefficient of thermal expansion than that of the substrate may be used to form the gate electrodes of NMOS transistors.
Abstract:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
Abstract:
A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.
Abstract:
A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
Abstract:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
Abstract:
In general, in one aspect, a method includes forming N-diffusion and P-diffusion fins in a semiconductor substrate. A P-diffusion gate layer is formed over the semiconductor substrate and removed from the N-diffusion fins. A pass-gate N-diffusion gate layer is formed over the semiconductor substrate and removed from the P-diffusion fins and pull-down N-diffusion fins. A pull-down N-diffusion layer is formed over the semiconductor substrate.