摘要:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
摘要:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
摘要:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
摘要:
A method including forming a via dielectric layer on a semiconductor device substrate; forming a trench dielectric layer on the via dielectric layer; forming a trench through the trench dielectric layer to expose the via dielectric layer; forming a via in the via dielectric layer through the trench to expose the substrate; and forming a semiconductor material in the via and in the trench. An apparatus including a device substrate; a dielectric layer formed on a surface of the device substrate; and a device base formed on the dielectric layer including a crystalline structure derived from the device substrate.
摘要:
A method including forming a via dielectric layer on a semiconductor device substrate; forming a trench dielectric layer on the via dielectric layer; forming a trench through the trench dielectric layer to expose the via dielectric layer; forming a via in the via dielectric layer through the trench to expose the substrate; and forming a semiconductor material in the via and in the trench. An apparatus including a device substrate; a dielectric layer formed on a surface of the device substrate; and a device base formed on the dielectric layer including a crystalline structure derived from the device substrate.
摘要:
A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
摘要:
A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
摘要:
A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
摘要:
A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
摘要:
A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.