Abstract:
An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured using a thin film transistor in which a channel fog nation region is formed using an oxide semiconductor which becomes an intrinsic or substantially intrinsic semiconductor by removing impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than that of a silicon semiconductor. With use of a thin film transistor using a highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device with low power consumption due to leakage current can be realized.
Abstract:
The following semiconductor device provides high reliability and a narrower frame width. The semiconductor device includes a driver circuit and a pixel portion. The driver circuit has a first transistor including a first gate and a second gate electrically connected to each other with a semiconductor film sandwiched therebetween, and a second transistor electrically connected to the first transistor. The pixel portion includes a third transistor, a liquid crystal element, and a capacitor. The liquid crystal element includes a first transparent conductive film electrically connected to the third transistor, a second conductive film, and a liquid crystal layer. The capacitor includes the first conductive film, a third transparent conductive film, and a nitride insulating film. The nitride insulating film is positioned between the first transparent conductive film and the third transparent conductive film, and positioned between the semiconductor film and the second gate of the first transistor.
Abstract:
To prevent an influence of normally-on characteristics of the transistor which a clock signal is input to a terminal of, a wiring to which a first low power supply potential is applied and a wiring to which a second low power supply potential lower than the first low power supply potential is applied are electrically connected to a gate electrode of the transistor. A semiconductor device including the transistor can operate stably.
Abstract:
An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided.
Abstract:
To provide a novel display device. The display device includes a pixel portion, a driver circuit portion that is provided outside the pixel portion, and a protection circuit that is electrically connected to one of or both the pixel portion and the driver circuit portion and includes a pair of electrodes. The pixel portion includes pixel electrodes arranged in a matrix and transistors electrically connected to the pixel electrodes. The transistor includes a first insulating layer containing nitrogen and silicon, and a second insulating layer containing oxygen, nitrogen, and silicon. The protection circuit includes the first insulating layer between the pair of electrodes.
Abstract:
The liquid crystal display device includes a first substrate provided with a terminal portion, a switching transistor, a driver circuit portion, and a pixel circuit portion including a pixel transistor and a plurality of pixels, a second substrate provided with a common electrode electrically connected to the terminal portion through the switching transistor, and liquid crystal between a pixel electrode and the common electrode. In a period during which a still image is switched to a moving image, the following steps are sequentially performed: a first step of supplying the common potential to the common electrode; a second step of supplying a power supply voltage to the driver circuit portion; a third step of supplying a clock signal to the driver circuit portion; and a fourth step of supplying a start pulse signal to the driver circuit portion.
Abstract:
A light-emitting device capable of suppressing variation in luminance among pixels is provided. A light-emitting device includes a pixel and first and second circuits. The first circuit has a function of generating a signal including a value of current extracted from the pixel. The second circuit has a function of correcting an image signal by the signal. The pixel includes at least a light-emitting element and first and second transistors. The first transistor has a function of controlling supply of the current to the light-emitting element by the image signal. The second transistor has a function of controlling extraction of the current from the pixel. A semiconductor film of each of the first and second transistors includes a first semiconductor region overlapping with a gate, a second semiconductor region in contact with a source or a drain, and a third semiconductor region between the first and second semiconductor regions.
Abstract:
The shift register includes first to fourth flip-flops. A first clock signal which is in a first voltage state in a first period and in a second voltage state in second to fourth periods is input to the first flip-flop. A second clock signal which is in the first voltage state in the second period and in the second voltage state in the third period and the fourth period is input to the second flip-flop. A third clock signal which is in the second voltage state in the first, second, and fourth periods and in the first voltage state in the third period is input to the third flip-flop. A fourth clock signal which is in the second voltage state in the first and second periods and in the first voltage state in the fourth period is input to the fourth flip-flop.
Abstract:
To increase the detection sensitivity of a touch panel, increase the visibility of a touch panel, provide a bendable touch panel, provide a thin touch panel, or provide a lightweight touch panel. The touch sensor has a first substrate, a first conductive layer, a second conductive layer, and an insulating layer. The first conductive layer includes a region between the first substrate and the second conductive layer. The insulating layer includes a region between the first conductive layer and the second conductive layer. The first conductive layer, the second conductive layer, and the insulating layer form a capacitor. The second conductive layer has an opening. The opening in the second conductive layer and the first conductive layer overlap with each other in a region.
Abstract:
A novel liquid crystal display device (LCD) including a touch sensor. The LCD includes a first substrate and a second substrate, which face each other, and a liquid crystal layer. The first substrate is provided with a pixel electrode. The second substrate is provided with a first electrode, a second electrode, and an insulating layer. The pixel electrode overlaps with the first electrode with the liquid crystal layer interposed therebetween. The second electrode overlaps with the first electrode with the insulating layer interposed therebetween. The LCD generates a signal corresponding to a potential of the second electrode. This structure enables a thin and lightweight LCD.