Abstract:
A memory device includes a plurality of bit lines extending in a first direction, a plurality of word lines extending in a second direction crossing the first direction, and a plurality of memory cells. Each memory cell includes a memory element and two select transistors disposed along the first direction and the memory element being configured to store information based on changes in resistance. A first and a second column are formed by repeatedly arranging a first group and a second group of the memory cells, respectively, along the first direction, and the second column is disposed adjacent to the first column and the first group is displaced in the first direction such that, in the second direction, a first select transistor in respective memory cells in the first column is aligned with a second select transistor in respective memory cells in the second column.
Abstract:
A memory element has a layered structure, including a memory layer that has magnetization perpendicular to a film face in which a magnetization direction is changed depending on information, and includes a Co—Fe—B magnetic layer, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, a first oxide layer and a second oxide layer.
Abstract:
There is disclosed a memory element including a memory layer that maintains information through the magnetization state of a magnetic material, a magnetization-fixed layer with a magnetization that is a reference of information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer. The storing of the information is performed by inverting the magnetization of the memory layer by using a spin torque magnetization inversion occurring according to a current flowing in the lamination direction of a layered structure having the memory layer, the intermediate layer, and the magnetization-fixed layer, the memory layer includes an alloy region containing at least one of Fe and Co, and a magnitude of an effective diamagnetic field which the memory layer receives during magnetization inversion thereof is smaller than the saturated magnetization amount of the memory layer.
Abstract:
A storage element includes a storage layer, a fixed magnetization layer, a spin barrier layer, and a spin absorption layer. The storage layer stores information based on a magnetization state of a magnetic material. The fixed magnetization layer is provided for the storage layer through a tunnel insulating layer. The spin barrier layer suppresses diffusion of spin-polarized electrons and is provided on the side of the storage layer opposite the fixed magnetization layer. The spin absorption layer is formed of a nonmagnetic metal layer causing spin pumping and provided on the side of the spin barrier layer opposite the storage layer. A direction of magnetization in the storage layer is changed by passing current in a layering direction to inject spin-polarized electrons so that information is recorded in the storage layer and the spin barrier layer includes at least a material selected from oxides, nitrides, and fluorides.
Abstract:
Spin transfer torque memory elements and memory devices are provided. In one embodiment, the spin transfer torque memory element includes a first portion including CoFeB, a second portion including CoFeB, an intermediate portion interposed between the first and second portions, a third portion adjoining the second portion opposite the intermediate portion, and a fourth portion adjoining the third portion opposite the second portion. The intermediate portion includes MgO. The third portion includes at least one of Ag, Au, Cr, Cu, Hf, Mo, Nb, Os, Re, Ru, Ta, W, and Zr. The fourth portion includes at least one alloy of Co, Fe, Pd, and Pt.
Abstract:
A memory comprising a memory array unit including a plurality of data units, and a controller. The controller is configured to receive data; convert the data into converted data using a conversion rule for converting a data piece into another data piece, wherein the conversion rule is selected based on the data received and independent of current data written in a data unit; and write the converted data and a conversion rule identifier corresponding to the conversion rule into the data unit.
Abstract:
There is disclosed an information storage element including a first layer including a ferromagnetic layer with a magnetization direction perpendicular to a film face; an insulation layer coupled to the first layer; and a second layer coupled to the insulation layer opposite the first layer, the second layer including a fixed magnetization so as to be capable of serving as a reference of the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material, and the magnetization state is configured to be changed by a spin injection. A magnitude of an effective diamagnetic field which the first layer receives is smaller than a saturated magnetization amount of the first layer.
Abstract:
A memory element includes a layered structure: a memory layer having a magnetization direction changed depending on information, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, including a first ferromagnetic layer having a magnetization direction that is inclined from a direction perpendicular to a film face, a bonding layer laminated on the first ferromagnetic layer, and a second ferromagnetic layer laminated on the bonding layer and bonded to the first ferromagnetic layer via the bonding layer, having a magnetization direction that is inclined from the direction perpendicular to the film face, a magnetization-fixed layer having a fixed magnetization direction, an intermediate layer that is provided between the memory layer and the magnetization-fixed layer, and is contacted with the first ferromagnetic layer, and a cap layer that is contacted with the second ferromagnetic layer.
Abstract:
A memory element has a layered structure, including a memory layer that has magnetization perpendicular to a film face in which a magnetization direction is changed depending on information, and includes a Co—Fe—B magnetic layer, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, a first oxide layer and a second oxide layer.
Abstract:
A magnetic memory device including a memory layer having a vertical magnetization on the layer surface, of which the direction of magnetization is changed according to information; and a reference layer provided against the memory layer, and being a basis of information while having a vertical magnetization on the layer surface, wherein the memory device memorizes the information by reversing the magnetization of the memory layer by a spin torque generated when a current flows between layers made from the memory layer, the nonmagnetization layer and the reference layer, and a coercive force of the memory layer at a memorization temperature is 0.7 times or less than a coercive force at room temperature, and a heat conductivity of a center portion of an electrode formed on one side of the memory layer in the direction of the layer surface is lower than a heat conductivity of surroundings thereof.