Abstract:
A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
Abstract:
Electrochromic windows powered by wireless power transmission are described, particularly, the combination of low-defectivity, highly-reliable solid state electrochromic windows with wireless power transmission. Wireless power transmission networks which incorporate electrochromic windows are described.
Abstract:
This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity.
Abstract:
A portable controller having a portable power supply for transitioning tint of an optical device such as an electrochromic device. The portable power supply has at least one battery located within a housing and a support structure for supporting the battery. The portable controller has circuitry with logic for controlling power to the optical device. In some cases, the portable power supply may provide a higher than normal drive voltage to the optical device to accelerate transition to the tint state and then may reduce the drive voltage to a normal level.
Abstract:
Intervertebral devices and systems, and methods of their use, are disclosed having configurations suitable for placement between two adjacent vertebrae, replacing the functionality of the disc therebetween. Intervertebral devices and systems contemplated herein are implantable devices intended for replacement of a vertebral disc, which may have deteriorated due to disease for example. The intervertebral devices and systems are configured to allow for ample placement of therapeutic agents therein, including bone growth enhancement material, which may lead to better fusion between adjacent vertebral bones. The intervertebral devices and systems are configured for use in minimally invasive procedures, if desired.
Abstract:
Tintable optical components such as windows are provided with a controller designed or configured to control the tinting in a manner that resists exposure to damaging thermal shock. The controller determines that a trigger condition for thermal shock is occurring or is about to occur and takes steps to avoid damaging thermal shock. In some cases, these steps include increasing the transmissivity of the optical component or holding the component in a highly transmissive state. In some cases, the steps involve heating the component.
Abstract:
This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.
Abstract:
This disclosure provides systems, methods, and apparatus for tempering or chemically strengthening glass substrates having electrochromic devices fabricated thereon. In one aspect, an electrochromic device is fabricated on a glass substrate. The glass substrate is then tempered or chemically strengthened. The disclosed methods may reduce or prevent potential issues that the electrochromic device may experience during the tempering or the chemical strengthening processes, including the loss of charge carrying ions from the device, redistribution of charge carrying ions in the device, modification of the morphology of materials included in the device, modification of the oxidation state of materials included in the device, and the formation of an interfacial region between the electrochromic layer and the counter electrode layer of the device that impacts the performance of the device.
Abstract:
A tissue removal device may comprise a handle portion and a tissue removal mechanism coupled to the handle portion. The tissue removal mechanism may include a tubular member having a lumen therethrough and an elongate member rotatably and slidably disposed within the lumen of the tubular member. A proximal end of the elongate member may be coupled to a drive source to impart rotational movement thereof. A distal end of the elongate member may include an impeller for cutting tissue. The elongate member may be configured to exit the distal end of the lumen of the first tubular member, such that the distal end of the second tubular member is distal to the distal end of the first tubular member. The impeller may include a blunt distal end to minimize undesirable tissue damage when the distal end of the elongate member is distal to the distal end of the tubular member.
Abstract:
Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.