Abstract:
A manufacturing process for chip package without core is disclosed. First of all, a conductive layer with a first surface and a second surface is provided. A first film is formed onto the first surface, and the conductive layer is patterned to form a patterned circuit layer. A solder resistance layer is formed on the patterned circuit layer and then patterned to expose parts of the patterned circuit layer. After a second film is formed on the solder resistance layer and the first film is removed, a chip is disposed on the first surface and electrically connected to the patterned circuit layer. A molding compound is formed to cover the patterned circuit layer and fix the chip onto the patterned circuit layer. After that, the second film is removed.
Abstract:
A manufacturing method of a chip package structure is provided. A circuit substrate having a first surface, a second surface, and a through hole connecting the first surface and the second surface is provided. A chip having an active surface and bonding pads disposed on the active surface is provided. The chip is fixed on the circuit substrate, wherein the second surface is opposite to the active surface and the bonding pads are exposed to the through hole. Bonding wires connecting the bonding pads and the first surface are formed through the through hole. A film having an opening is formed on the first surface. The bonding wires, the bonding pads, the through hole, and part of the first surface are exposed by the opening. An encapsulant is formed to encapsulate part of the active surface, the bonding wires, and part of the first surface. The film is removed.
Abstract:
A film coating system for coating an object includes a working station and an isolating device. The object is disposed on the working station, and the isolating device is utilized to isolate the object. The isolating device includes a body generating a first power, a first working fluid, a second working fluid, a first guiding portion and a second guiding portion. The first guiding portion guides the first working fluid to pass through the body, thereby forming a first working region to coat the object thereon. The second guiding portion guides the second working fluid excited by the first power of the body to pass through the body, thereby forming a second working region to separate the first working region from the object.
Abstract:
A memory apparatus includes a plurality of memory units, a sensing circuit and a bias-generating circuit. The plurality of memory units respectively outputs a data current to the sensing circuit, while the sensing circuit further includes a plurality of first transistors, a plurality of second transistors and a plurality of sensing amplifiers. In order to speed up the access time of the memory units, the bias-generating circuit rapidly provides a bias signal to the sensing circuit to turn on the first transistors of the sensing circuit. In the present invention, the sensing circuit uses a common reference voltage to reduce the circuit utilization area of the memory apparatus.
Abstract:
A mold release agent of polybenzoxazine is used in an imprinting process. With the novel mold release agent used, a surface energy of a template is greatly reduced, so that an excel lent imprinted image is obtained. Besides, the mold release agent is totally resolved in a solution with no pollution produced. In short, the present invention has a high stability and a low cost with easy-obtained source materials.
Abstract:
System and method for improving immersion scanner overlay performance are described. One embodiment is a method of improving overlay performance of an photolithography immersion scanner comprising a wafer table having lens cooling water (“LCW”) disposed in a water channel therein, the wafer table having an input for receiving the LCW into the water channel and an output for expelling the LCW from the water channel. The method comprises providing a water tank at least one of the wafer table input and the wafer table output; monitoring a pressure of water in the water tank; and maintaining the pressure of the water in the water tank at a predetermined level.
Abstract:
A method for processing substrates to manufacture semiconductor structures thereon includes analyzing at least one first processing parameter of a first apparatus for processing a substrate, thereby yielding at least one first throughput rate of the first apparatus. At least one second processing parameter of a second apparatus is analyzed for processing the substrate, thereby yielding at least one second throughput rate of the second apparatus. The first throughput rate and the second throughput rate are compared, thereby yielding at least one comparison result for processing the substrate.
Abstract:
A digital camera module (100) includes a lens module (20) and a chip package (50) mounted in a light path of the lens module. The lens module includes a first lens assembly (21) and a second lens assembly (23). The first lens assembly includes a first fixture (211) having a through hole (212) defined therein and at least one lens (218) received in the through hole. The second assembly includes a second fixture (23) having a through hole (232) defined therein and at least one lens (238) attached therein. One of the first fixture and the second fixture has a slotted annular ring (213) protruding therefrom with an annular slot (214) defined therein. The other has a male annular ring (235) extending therefrom, and the slotted annular ring and the male annular ring matingly engage with each other to fix the first lens assembly and second assembly together.
Abstract:
The present invention relates to a method of manufacturing an ultra-thin soft conductive cloth, which includes the steps of providing a cloth interwoven with artificial fibers, thermal calendering the cloth at least once to reduce the thickness and increase the softness, and electroless plating the thermal calendered cloth for metallization, so as to form the ultra-thin soft conductive cloth having electromagnetic shielding effect.
Abstract:
A method for environment detection to be implemented by a system, which includes a detection module and a control module, includes the steps of establishing a wireless communications link between the detection module and the control module, enabling the detection module to generate a warning signal that is transmitted wirelessly by the detection module when the detection module detects occurrence of an abnormal environment condition, and enabling the control module to receive the warning signal from the detection module through the wireless communications link and to process the warning signal accordingly. A system for realizing the method is also disclosed.