Abstract:
In accordance with systems and methods of the present disclosure, an audio device may include an electrical terminal, an audio circuit, and a transducer load detection circuit. The electrical terminal may couple a transducer device to the audio device. The audio circuit may generate an analog audio signal, wherein the analog audio signal is coupled to the electrical terminal The transducer load detection circuit may detect a load impedance of the transducer device when the transducer device is coupled to the audio device from characteristics measured at the electrical terminal.
Abstract:
A turn-off transition time period, also referred to as a reverse recovery time period, may be compensated for by a controller of a power stage including a bipolar junction transistor (BJT). The reverse recovery time period may be measured in one switching cycle and a subsequent switching cycle may include compensations based on the measured reverse recovery time period. That is the switching on and off of the BJT may be compensated to obtain a desired average output current to a load. When the reverse recovery time period is known, an error in the peak current obtained due to the reverse recovery time period may be calculated. The calculated error may be used to offset the target peak current for controlling the switching of the BJT to begin a turn-off transition of the BJT earlier in a switching cycle and thus reduce error in peak current at the BJT.
Abstract:
In accordance with methods and systems of the present disclosure, a processing circuit may implement a feedback filter having a response that generates a feedback anti-noise signal component from a playback corrected error, the playback corrected error based on a difference between an error microphone signal and a secondary path estimate, and wherein the anti-noise signal comprises at least the feedback anti-noise signal component, a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal, and a secondary coefficient control block that shapes the response of the secondary path estimate adaptive filter in conformity with a source audio signal and the playback corrected error by adapting the response of the secondary path estimate adaptive filter to minimize the playback corrected error.
Abstract:
In accordance with embodiments of the present disclosure, a digital microphone system may include a microphone transducer and a digital processing system. The microphone transducer may be configured to generate an analog input signal indicative of audio sounds incident upon the microphone transducer. The digital processing system may be configured to convert the analog input signal into a first digital signal having a plurality (e.g., more than 3) of quantization levels, and in the digital domain, process the first digital signal to compress the first digital signal into a second digital signal having fewer quantization levels (e.g., +1, 0, −1) than that of the first digital signal.
Abstract:
The stability of a delta-sigma modulator may be improved by limiting a value within the delta-sigma modulator. For example, the value provided to a quantizer may be limited, by a limiter circuit in the delta-sigma modulator, to a value within a single step range of the quantizer. The limiter circuit may be placed in an inner loop of the delta-sigma modulator to decouple the stability of the inner loop from an outer loop. For example, a delta-sigma modulator may be constructed with an inner loop having a sixth order and an outer loop having a second order, in which the stability of the delta-sigma modulator is proportional to that of a second order.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancellation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods may include a switch coupled at its gate terminal to an input signal voltage, the input signal voltage for controlling a gate voltage of a gate terminal of a driver device coupled at its non-gate terminals between a rail voltage and an output node. The systems and methods may also include a diode having a first terminal and a second terminal, the diode coupled to a non-gate terminal of the switch such that when the switch is enabled, the first terminal is electrically coupled to the gate terminal of the driver device and the second terminal is electrically coupled to the output node.
Abstract:
An electronic system and method include a controller to actively control transfer of excess energy to an auxiliary-winding of an auxiliary power dissipation circuit. The excess energy is a transfer of energy from a primary winding of a switching power converter to the auxiliary-winding of the auxiliary power dissipation circuit. In at least one embodiment, the electronic system is a lighting system that includes a triac-based dimmer. The excess energy is energy drawn through the primary-side winding of the switching power converter to provide operational compatibility between a dimmer through which a power supply provides energy to the switching power converter and a load to which the switching power converter provides energy.
Abstract:
An RMS detector uses the concept of the k-NN (classifying using nearest neighbors)-algorithm in order to obtain RMS values. A rms detector using first-order regressor with a variable smoothing factor is modified to penalize samples from center of data in order to obtain RMS values. Samples which vary greatly from the background noise levels, such as speech, scratch, wind and other noise spikes, are dampened in the RMS calculation. When background noise changes, the system will track the changes in background noise and include the changes in the calculation of the corrected RMS value. A minimum tracker runs more often (e.g. two or three times) than the rate as in prior art detectors and methods, tracks the minimum rms value, which is to compute a normalized distance value, which in turn is used to normalize the smoothing factor. From this data, a corrected or revised RMS value is determined as the function of the previous RMS value multiplied by one minus the smoothing factor plus the smooth factor times the minimum rms value to output the corrected RMS for the present invention. The rms value is used to generate a reset signal for the minimum tracker and is used to avoid deadlock in the tracker, for example, when the background signal increases/decreases over time.
Abstract:
Methods and systems to provide compatibility between a load and a secondary winding of an electronic transformer driven by a leading-edge dimmer may include: (a) responsive to determining that energy is available from the electronic transformer, drawing a requested amount of power from the electronic transformer thus transferring energy from the electronic transformer to an energy storage device in accordance with the requested amount of power; and (b) transferring energy from the energy storage device to the load at a rate such that a voltage of the energy storage device is regulated within a predetermined voltage range.