Abstract:
Provided according to some embodiments is a thermostat is capable of discerning the time-of-day without external input. Should the user fail to set the time, the thermostat uses one or more sensors to determine the time-of-day through a variety of techniques. In one example, a light sensor can monitor natural light to understand the cycle of sun with respect to the installation location. From the cycle of natural light a latitude, time-of-year, time-of-day, etc. can be estimated through processing sensor information over time. Should the thermostat have its time manually set or gathered from the network, it would override the estimated time-of-day. Techniques can be used to filter input from the one or more sensors to avoid confusion from other inputs, for example, man-made lighting.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
A computing system performs a method of determining cumulative exposure to a gas. The computing system receives data that correspond to local concentrations of a gas from a plurality of stationary gas sensors in a home. Respective stationary gas sensors are located at respective fixed locations in respective rooms in the home. The computing system also receives data that correspond to occupancy of the home, including occupancy by a first occupant. The computing system determines a cumulative exposure of the first occupant to the gas in the home, based at least in part on the received data that correspond to local concentrations of the gas and the received data that correspond to occupancy of the home. The computing system performs and/or sends instructions to perform one or more predefined operations in accordance with the determined cumulative exposure of the first occupant.
Abstract:
Systems and methods for using multi-criteria state machines to manage alarming states and pre-alarming states of a hazard detection system are described herein. The multi-criteria state machines can include one or more sensor state machines that can control the alarming states and one or more system state machines that can control the pre-alarming states. Each state machine can transition among any one of its states based on sensor data values, hush events, and transition conditions. The transition conditions can define how a state machine transitions from one state to another. The hazard detection system can use a dual processor arrangement to execute the multi-criteria state machines according to various embodiments. The dual processor arrangement can enable the hazard detection system to manage the alarming and pre-alarming states in a manner that promotes minimal power usage while simultaneously promoting reliability in hazard detection and alarming functionality.
Abstract:
Apparatus, systems, methods, and related computer program products for optimizing a schedule of setpoint temperatures used in the control of an HVAC system. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat includes a schedule of setpoint temperatures that is used to control an HVAC system associated with a structure in which the thermostat is located. The schedule of setpoint temperatures is continually adjusted by small, unnoticeable amounts so that the schedule migrates from the original schedule to an optimal schedule. The optimal schedule may be optimal in terms of energy consumption or some other terms.
Abstract:
Embodiments of the present invention provide a temperature control system having programmable, interchangeable docking thermostats that work cooperatively to achieve desired temperature control in an enclosure. Various embodiments provide first and second thermostats each having one or more temperature sensors. Also provided may be a first HVAC docking device directly wired to the HVAC wire system and a second docking device that may connect to a power source other than the HVAC wire system, where each of the docking devices have an electrical connector mateable to the electrical connector of the docking thermostats. The first and second docking thermostats may interchangeably mate to the docking devices, and either may control the HVAC system to achieve a desired comfort level.
Abstract:
A user-friendly programmable thermostat is described that includes receiving an immediate-control input to change set point temperature, controlling temperature according to the set point temperature for a predetermined time interval, and then automatically resetting the set point temperature upon the ending of the predetermined time interval such that the user is urged to make further immediate-control inputs. A schedule for the programmable thermostat is automatically generated based on the immediate-control inputs. Methods are also described for receiving user input relating to the user's preference regarding automatically generating a schedule, and determining whether or not to automatically adopt an automatically generated schedule based on the received user input.
Abstract:
Systems and methods for forecasting events can be provided. A measurement database can store sensor measurements, each having been provided by a non-portable electronic device with a primary purpose unrelated to collecting measurements from a type of sensor that collected the measurement. A measurement set identifier can select a set of measurements. The electronic devices associated with the set of measurements can be in close geographical proximity relative to their geographical proximity to other devices. An inter-device correlator can access the set and collectively analyze the measurements. An event detector can determine whether an event occurred. An event forecaster can forecast a future event property. An alert engine can identify one or more entities to be alerted of the future event property, generate at least one alert identifying the future event property, and transmit the at least one alert to the identified one or more entities.
Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security objectives, such as calculating a security score for a home. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security objectives, such as calculating a security score for a home.