Abstract:
In order to prevent misdetection and erroneous detection by clearly determining only a contrast caused by a foreign matter, there are provided an X-ray inspection method and an X-ray inspection device including: an X-ray tube (11) for irradiating a measurement sample with a characteristic X-ray having energy lower than an X-ray absorption edge of one element contained in the measurement sample and having energy higher than an X-ray absorption edge of a detection element; an X-ray detector (13) for receiving a transmission X-ray obtained when the X-ray passes through the sample; and an operation portion (15) for obtaining a contrast image from a transmission image of the transmission X-ray.
Abstract:
A charged particle beam apparatus includes a charged particle source, an aperture, an object lens, an observing unit, an aperture driving portion, and a control portion. The control portion includes a spot pattern forming portion that forms a plurality of spot patterns on a surface of a sample by irradiating a charged particle beam, an analyzing portion that calculates a position of a spot center of the spot pattern and a geometrical center position of a halo, and an adjusting position determining portion that calculates an adjusting position based on a position of intersecting lines connecting the positions of the spot centers of the respective spot patterns and the center position of the halo. In this manner, the position of the aperture can be easily and accurately adjusted in a short period of time by moving the center axis of the aperture to the adjusting position.
Abstract:
By resistor attached by a piezoelectric element, measurement with high accuracy is possible by strain of the piezoelectric element. A piezoelectric actuator includes the piezoelectric element which is formed into an arbitrary shape, polarized in an arbitrary direction, and includes electrodes provided on at least two surfaces opposed in a thickness direction thereof. The piezoelectric actuator also includes a driver power supply for applying a voltage between the electrodes to generate strain in the piezoelectric element, a driver power supply for applying a voltage to generate strain in the piezoelectric element, resistors provided on the electrodes through intermediation of insulators, and a displacement detection device connected with the resistors. The electrodes of the piezoelectric element on which the resistors are provided are set at a ground potential.
Abstract:
Provided is an X-ray analysis apparatus including: an X-ray tubular bulb for irradiating a sample with a radiation beam; an X-ray detector for detecting a characteristic X-ray and a scattered X-ray and outputting a signal containing energy information on the characteristic X-ray and the scattered X-ray; an analyzer for analyzing the signal; a sample stage capable of moving an irradiation point relatively with respect to the sample within a mapping area set in advance; and an X-ray mapping processing section for discriminating an X-ray intensity corresponding to a specific element, determining an intensity contrast in which a color or lightness is changed in accordance with the X-ray intensity, and for performing image display at a position corresponding to the irradiation point, in which the X-ray mapping processing section determines the intensity contrast of the X-ray intensity at the irradiation point by setting in advance the X-ray intensity discriminated as to a reference material in which a component element and a concentration thereof are known as a reference.
Abstract:
In detecting a displacement of a cantilever (2) by a displacement detecting mechanism (5) and allowing a probe (1) and a sample (8) to approach each other by at least one of a coarse-movement mechanism (13) and a vertical direction fine-movement mechanism (11) at the same time, an excitation mechanism (4) excites the cantilever (2) with a first excitation condition and the probe (1) and the sample (8) are allowed to approach each other with a first stop condition, and then the cantilever (2) is excited with a second excitation condition different from the first excitation condition, a second stop condition is set, and the probe (1) and the sample (8) are allowed to approach each other by the at least one of the vertical direction fine-movement mechanism (11) and the coarse-movement mechanism (13) until the second stop condition is satisfied.
Abstract:
Provided is a charged-particle beam apparatus capable of preventing a small amount of dust from being attached to an electrostatic lens serving as an objective lens to apply a high voltage to the electrostatic lens.The charged-particle beam apparatus 1 includes a chamber 2 which has an interior 2a evacuated by an intra-chamber evacuating means 4, and a lens-barrel 3 which emits a charged-particle beam B1 onto a sample S put in the interior 2a of the chamber 2. The lens-barrel 3 includes a cylindrical body 5 which includes an emission outlet 6 for emission of the charged-particle beam B1, a charged-particle supply part 7 which is housed at a side of a proximal end 5b in an interior 5a of the cylindrical body 5 and releases the charged-particle beam B1, and an objective lens 11 which is housed at a side of a distal end 5b in the interior 5b of the cylindrical body 5 and has an electrostatic lens for generating an electric field and converging the charged-particle beam B1 released from the charged-particle supply part 7. The cylindrical body 5 of the lens-barrel 3 is provided with a gas supplying means 12 capable of supplying a gas G to the interior 5b of the cylindrical body 5, and the gas supplying means 12 is provided at a side of a proximal end of the objective lens 11.
Abstract:
A superconducting radiometry apparatus has a micro-calorie meter that detects an energy of a radiant ray as a temperature change. A signal detection mechanism detects an electric current flowing to the micro-calorie meter. A heat addition device adds a quantity of heat to the micro-calorie meter. A peak value monitor measures, in synchronization with the addition of the quantity of heat to the micro-calorie meter, a peak value of an output voltage corresponding to an output signal from the signal detection mechanism. An energy correction device corrects, on the basis of an output from the peak value monitor, an energy value so as to become a peak value corresponding to the quantity of heat added to the micro-calorie meter.
Abstract:
The optical displacement-detecting mechanism has: a light source for irradiating a target for measurement with light; a light source-driving circuit for driving the light source; an optical detector made from a semiconductor for receiving light after the irradiation of the target for measurement by the light source and converting the light into an electric signal thereby to detect an intensity of light; and an amplifier including a current-voltage conversion circuit for performing current-to-voltage conversion on a detection signal of the optical detector with a predetermined amplification factor. In the optical displacement-detecting mechanism, a light source having a spectrum half width of 10 nm or larger is used, whereby the light source can be driven with an output power of 2 mW or larger without generating mode hop noise and optical feedback noise.
Abstract:
To enable the reduction in working efforts by hand by performing control a drying operation by appropriately selecting dry conditions depending on the connection mode of the cooling device, and removal of moisture and the like without fail. The thermal analysis system uses a heater and a cooling device to raise and decrease the temperature inside the purge box. In the drying method for the thermal analysis system, the drying operation is performed by: previously setting dry conditions depending on the connection mode of the cooling device; starting control of an opening time dry process upon activation of the thermal analysis system; supplying a predetermined amount of dry gas into the purge box in accordance with the dry conditions corresponding to the selected connection mode of the cooling device with the cooling device kept off; and making the temperature control module control the temperature of the dry gas.
Abstract:
An opaque defect is processed by scanning with a high load or height fixed mode using a probe harder than a pattern material of a photomask at the time of going scanning, and is observed by scanning with a low load or intermittent contact mode at the time of returning scanning so as to detect an ending point of the opaque defect by the height information. When there is a portion reaching to a glass substrate as an ending point, this portion is not scanned by the high load or height fixed mode in the next processing, and only a portion not reaching to the ending point is scanned by the high load or height fixed mode.