Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
An optical coupling device includes a first lead part, a light emitting element mounted on the first lead part, a first wire connected to the first lead part and the light emitting element, a second lead part, a light receiving element fixed to the second lead part, a second wire connected to the second lead part and the light receiving element, and an insulating film configured to allow passage of light emitted from the light emitting element. The insulating film does not make contact with the first lead part, the light emitting element, the first wire, the second lead part, the light receiving element, or the second wire.
Abstract:
To increase the sensitivity of detector arrangements, it is known that light deflection elements in the form of a line arrays having spherical elements may be used to focus incident light onto light-sensitive regions of the detector. Manufacturing such line arrays is complex and cost intensive, especially in small lot numbers. The increased sensitivity of the detector array can be achieved easily and inexpensively by using a novel light deflection element. The detector arrangement therefore has a light deflection element having light entrance surfaces, deflecting incident light by refraction onto light-sensitive regions of the detector. Light entrance surfaces of the light deflection element are inclined with respect to one another and are designed as planar surfaces. The detector arrangement is suitable in particular for detection of light emanating from a specimen in a microscope, preferably in a laser-scanning microscope.
Abstract:
A solid-state imager includes a photoelectric conversion region for photoelectrically converting a light beam received on a light receiving surface thereof into a signal charge and a waveguide path for guiding the light beam to the light receiving surface. The waveguide path includes a plurality of waveguide members, each waveguide member guiding a light beam incident on a light incident surface thereof to a light output surface thereof. The plurality of waveguide members are laminated on the light receiving surface. A first waveguide member closest to the light receiving surface from among the plurality of waveguide members faces the light receiving surface and is smaller in area than a light incident surface of a second waveguide member farthest from the light receiving surface from among the plurality of waveguide members.
Abstract:
A field-effect transistor (62a) has a back gate (62ag2). The back gate (62ag2), a cathode of a photodiode (62b), and a first end of a first capacitor (62c) are connected with each other via a first node (netA). An anode of the photodiode (62b) is connected with a first line (Vrst). A second end of the first capacitor (62c) is connected with a second line (Csn). A gate (62ag1) of the field-effect transistor (62a) is connected with a third line (Vrwn), and a drain of the filed-effect transistor (62a) is connected with a fourth line (Vsm). A source of the field-effect transistor (62a) is an output of an output amplifier (62a).
Abstract:
The present invention provides radiation detectors with high detection sensitivity. The radiation detectors according to the present invention each include an Al2O3 substrate, a CaxCoO2 (where 0.15
Abstract translation:本发明提供了具有高检测灵敏度的辐射探测器。 根据本发明的辐射检测器各自包括Al 2 O 3衬底,层叠在Al 2 O 3衬底上并具有与Al 2 O 3衬底的表面倾斜的CoO 2平面的CaxCoO 2(其中0.15
Abstract:
The photosensor comprises an insulating layer formed over the silicon substrate; an ultraviolet photosensitive element formed over the insulating layer and having a first diffusion layer, a second diffusion layer provided spaced away from the first diffusion layer, and a third diffusion layer connected with the first diffusion layer and the second diffusion layer respectively; and a visible light photosensitive element formed over the insulating layer with being spaced away from the ultraviolet photosensitive element, and having a fourth diffusion layer, a fifth diffusion layer provided spaced away from the fourth diffusion layer, and a sixth diffusion layer connected with the fourth diffusion layer and the fifth diffusion layer respectively.
Abstract:
The present invention provides radiation detectors with high detection sensitivity. The radiation detectors according to the present invention each include an Al2O3 substrate, a CaxCoO2 (where 0.15
Abstract translation:本发明提供了具有高检测灵敏度的辐射探测器。 根据本发明的辐射检测器各自包括Al 2 O 3衬底,层叠在Al 2 O 3衬底上并具有与Al 2 O 3衬底的表面倾斜的CoO 2平面的CaxCoO 2(其中0.15
Abstract:
A structure includes a film having a plurality of nanoapertures. The nanoapertures are configured to allow the transmission of a predetermined subwavelength of light through the film via the plurality of nanoapertures. The structure also includes a semiconductor layer in connection with the film to facilitate the detection of the predetermined subwavelength of light transmitted through the film.
Abstract:
The monitoring of UV radiation has received increased attention recently due to the hazards of accelerated skin ageing and even cancer following excessive exposure. Personalized monitoring gives a more accurate reading than crude weather forecasts of the ‘UV index’. This invention answers both these needs in a personal UV monitor that is incorporated into an existing display. Minimal processing changes are made to an existing display in order to achieve this added functionality, which is therefore achieved at little additional cost.